
22C:185

page 1 of 2

Computation Rules and Fixed Points

Conventional ways of passing arguments are at odds with the fixed point approach we
have adopted as our means of describing recursion. Since our semantic equations are a
means of describing functions, we will restrict our attention to functional descriptions
here, but the problems extend to more general circumstances (e.g., passing arguments
by “reference”). The terminology used in this note is that an identifier appearing as an
argument in a function definition is referred to as a parameter, and an expression
appearing in an application of a function is referred to as an argument.

In the context of defining pure functions, there are two alternative means of “transmitting”
arguments in a function application. Most common is passing an argument by-value --
this means that at call time each argument expression is evaluated, and that value is
used in the function body whenever there is a reference to the corresponding parameter;
this is also referred to as eager (or inside-out) evaluation. The second alternative is
passing an argument by-name -- this means that at call time no argument expressions
are evaluated, and instead these expressions are evaluated only when in the execution
of the function body, a reference to the corresponding parameter is encountered; this is
also referred to as lazy (or outside-in) evaluation Each of these approaches has been
adopted in various languages -- eager evaluation in e.g., C, ML, and Java, and lazy
evaluation in e.g. Algol 60, Miranda, and Haskell. There are actually several variants to
these approaches, but in our pure functional context they are not significant to the
defined function (we ignore efficiency concerns).

We illustrate the effect of these issues with an example. Consider the definition of a
function (over all integers Z)

P: f(x,y) = if x>10 then x-1 else f(x+2, f(x,y+1)).
With this definition, different functions are obtained depending whether arguments are
passed by value or by name.

Consider f(9,1)
• by-value/eager/inside-out

fe(9,1) = fe(11, fe(9,2))
= fe(11, fe(11, fe(9,3)))
= fe(11, fe(11, fe(11, fe(9,4))))

= … = undefined
• by-name/lazy/outside-in

fl(9,1) = if 9>10 then … else fl(9+2, fl(9,1+1))
= fl(9+2, fl(9, 1+1))
= if 9+2>10 then (9+2)-1 else …
= 10

Hence fe ≠ fl. Using our partial order notation, we can express the definition of fe as

fe(x,y) = if x>10 then x-1 else ^.

22C:185

page 2 of 2

Assertion: Eager argument transmission is not a “fixed point rule” – that is, the function
defined recursively using by-value need not be the least (or any) fixed point.
Proof:
The definition P given above can be seen to serve as a counter-example. Using the
descriptions

fe(x,y) = if x>10 then x-1 else ^, and

[P(fe)] (x,y) = if x>10 then x-1 else fe(x+2,fe(x,y+1))

we can verify that function fe is not a fixed point of program P, much less the least fixed

point. This is an immediate consequence of the observations:
• fe(9,1) = ^, and

• [P(fe)] (9,1) = fe(11, fe(9,3)) = 10.

This is a disturbing outcome since it means that when we examine the definition
P: f(x,y) = if x>10 then x-1 else f(x+2, f(x,y+1))

we cannot think of the instances of 'f' appearing in the function body on the right as
denoting the same function as the instance being defined on the left!! Using one name
for two different things is an invitation to confusion and to counter-intuitive results.

Theorem: Lazy argument transmission is a “fixed point rule” – that is, the function
defined recursively using by-name is the least fixed point.

We will not prove this result – the development can be found in the Manna book on our
reserve list. However, the basic reason for this result is that the conditional (if-then-else)
used in function definitions is “lazy” – that is, either the then-part is evaluated and the
else-part is not, or vice-versa. We already observed this effect above where fe(9,1) is

undefined while [P(fe)] (9,1) is 10.

So the least fixed point approach conforms to lazy evaluation, but not to eager
evaluation. Thus in numerous cases of practical interest where eager evaluation is used,
the least fixed point idea does not immediately capture the computation. This does not
conflict with the use of the fixed point concept as the definitional basis for recursion in
our semantic functions. For eager evaluation, the semantic function definitions simply
incorporate a description of the required computational behavior. We had an example of
this in our text describing eager evaluation of procedure arguments in Pelican, where the
application of the evaluate function to the argument preceded the application of the
execute function to the procedure body. Finally, note that if a function is total (defined for
all arguments), then eager and lazy evaluation produce the same definition so in these
cases the fixed point analysis applies directly.

