Algebraic Specification of Objects

Our methodology for the abstract specification of (classes of) objects parallels
traditional algebraic ADT specifications in many ways. We believe that our approach
clarifies the essential difference between data abstraction and object abstraction. It
stresses the connection of the behavior of objects with sequences of messages
while maintaining the essence of state as an overt but completely abstract entity.
While we abstract away from details about state, we do not regard it as a hidden sort
as in [GM87] — the presence or absence of state is not transparent. Effective
integration of the state concept into formal specification enhances an intuitively natural
match of the abstraction with implementation details. The idea of viewing state as a
hidden argument captures intuition better since its connection with the visible
operations is concealed but not completely severed.

The approach we suggest begins with categorizing the methods according to their
dependence and effect on the internal state of an object and making those
categories an explicit part of the specification. Specifications of the state transition
functions are associated with the side-effect inducing methods and provide an
abstract description of each of them and the states. Once the state behavior is
established, descriptions of the state-dependent methods can be pursued.
Because of the role of states in overall behavior, our specifications are intended to
distinguish objects only if they have observable behavior which differs. Thus we
prefer the final algebra interpretation [GH78, Kam83, Wan79] over the initial algebra
view [GTW?78]. Of course, the state-independent methods constitute an ordinary
ADT and can be specified by well established means.

We wish to describe object behavior and hence seek to avoid differentiation of
objects based on their internal structure. Hence two states are equivalent
(indistinguishable) provided that if we start with two objects, one in each of these
states, then for every sequence of messages ending with a selector message, both
objects return the same result — that is, the two objects are indistinguishable by any
external means. In the ADT literature this is known as the “final algebra” view.

Since our approach results in an ADT-style description of a collection of functions,
ADT analysis concepts generally apply. For instance, “sufficient completeness” for
terms whose primary operation is a selector remains a property of interest. The
primary difference to be accounted for is with the State domain which is represented
by sequences of side-effect inducing messages. For the model of an AOC
specification we take an “abstract machine” view [MG85, GM87]. The states are the
indistinguishability classes of the state representations occurring in our specification,
with transitions given by the collection of next-state functions. Any implementation
equivalent to the minimal state machine is regarded as acceptable.

Example — Histogram Objects.

This example is a familiar device — the histogram, a commonly used aggregation of
values that may be inspected, graphed, etc. For illustration we assume methods of
the class with informal descriptions as follows:

empty — the initial, empty histogram,

tally(v) — add value v to the receiving histogram,

high — return the greatest value in the histogram,

low — return the least value in the histogram,

average — return the average of the values in the histogram,

sampleSize — return the number of observations in the histogram,

frequency(v) — return the number of times value v appears in the histogram.



class Histogram

Signatures — state-dependent operations — visible operations have State as a
hidden argument

tally: Value — Histogram

*Oiq)y- State, Value — State (hidden function)

high: ¢ — Value

low: e— Value

average: ¢ — Value

sampleSize: ¢ — Natural

frequency: Value — Natural

State-independent operations
empty: ¢ — Histogram

The results of sending messages to a Histogram object are specified by the
collection of equations below. For the 'tally' message we want the result to be the
receiving object in its new state. This is implicitly indicated by providing no equation
for the 'tally' operation itself and interpreting this omission as the signal for this
common option. The relevant equation is that provided for the associated state
transition function. Equations use conditional expressions as is typical in ADT
descriptions. In addition to the TOI (Histogram), there are two pre-defined classes
(ADTs actually) assumed in this specification. Natural is thought of as the familiar
natural numbers, and Value is assumed to provide a domain with suitable numeric
operations. Details of these classes are omitted.

Equations — for each s&State and v,w&Value
Siay(S:V) = Stally'(v)
high(s"'tally'(v)) = if s=sempty then v else max(v, high(s))
low(s'tally'(v)) = if s [ 'empty' then v else min(v, low(s))
sampleSize(empty) = 0
sampleSize(sM'tally'(v)) = if s=empty then 1 else 1 + sampleSize(s)
frequency('empty’, w) =0
frequency(sM'tally'(v), w) = if v = w then 1 + frequency(s, w) else frequency(s, w)
average(sM'tally'(v)) = if s = 'empty' then v
else (v + sampleSize(s)*average(s)) / (1 + sampleSize(s))

Note that the state of a Histogram object is assumed to be determined by the
sequence of all the side-effect inducing messages it has received since its creation.
This message history representation of states consists of a sequence of message
identifiers and their arguments (including their state information). Comparisons of
states written as “[” denote state equivalence. Actually the above equations are the
“ok-equations”. For brevity the error cases such as sending the 'high' message to the
'empty' Histogram are omitted.
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