
22C/55:181

1

Term Rewriting Systems — first look

Tern rewriting systems are used to obtain an operational semantics for
equational specifications.  Each equation is oriented from left-to-right and is used
in a “substitute equals for equals” scheme.

Definition: a substitution σ is a mapping from variables to terms, σ: vars →
terms. A substitution is applied a term by replacing each occurrence of a
variable V by σ(V). If V is not mapped by σ, assume σ(V) = V.

For example if σ(X) = X + 1, then applying σ to X + Y yields (X + 1) + Y.

Equations as rewrite rules:
• equation t1 = t2 becomes rewrite rule t1 ⇒ t2,
• a rewrite rule t1 ⇒ t2 is applied to a term t by finding a subterm t' of t so that

σ(t1) = t', and then replacing t' by σ(t2) in t. We write t1 ⇒* t2 provided that for
some t3, t4, … t1 ⇒ t3 ⇒ … ⇒ t4 ⇒ t2.

Example
0 + X = X
s X + Y = s(X + Y)
0 * X = 0
(s X) * Y = (X * Y) + X

Then
0 + (s 0 * 0)
⇒ s 0 * 0 by rule 1
⇒ (0 * 0) + 0 by rule 4
⇒ 0 + 0 by rule 3
⇒ 0 by rule 1

Definition: a collection of rewrite rules is called terminating if there is no infinite
chain t1 ⇒ t2 ⇒ t3 ⇒ …

The rewriting rules illustrated above are terminating, but in general this is not
easy to determine. There are very simple rules that are not terminating (e.g., X +
Y = Y + X), and when several rules cooperate to cause non-termination it is
genuinely difficult to detect.

Definition: a term that cannot be rewritten as another is said to be in normal
form; if we start from a term and perform rewriting until it is no longer possible,
the result is referred to as the normal form of the original. For instance, for the



22C/55:181

2

system above, s(s 0) + s 0 ⇒2  s(s 0 +s 0) ⇒2  s(s(0 + s 0)) ⇒1  s(s(s 0)), and this last

term is the normal form of s(s 0) + s 0.

Definition: a collection of rewrite rules is called confluent if whenever t1 ⇒ t2
and t1 ⇒ t3, then there is t4 so that t2 ⇒* t4 and t3 ⇒* t4.

The options for rewriting a term with different rules will often be numerous, and
may even be so using only one rule. For instance, with the above system, we
have s(0 + s 0) + s 0 ⇒1  s(s 0) + s 0 and s(0 + s 0) + s 0 ⇒2  s(0 + s 0 + s 0). The

confluence property guaranties that the choice among such alternatives is
irrelevant in the sense that they will all converge to a common result by further
rewriting. The system above is also confluent, but again this may not be easy to
determine. In the instance above, s(s 0) + s 0 ⇒2  s(s 0 + s 0), and s(0 + s 0 + s 0)
⇒
1  s(s 0 + s 0).

Lemma: if a rewriting system R is confluent, then the normal form of any term, if it
exists, is unique.

Definition: if R is a terminating rewriting system and ≡ is its corresponding
equivalence relation (i.e., view each ⇒ as =), then R is canonical if for every pair
of terms t1 and t2, t1 ≡ t2 if and only if t1 and t2 have the same normal form.

Hence, every term of each equivalence class rewrites to a unique normal form,
the canonical form of the class.

Theorem: a rewriting system is canonical if and only if it is terminating and
confluent.

According to this theorem, the equational axiom systems where this rewriting
animation is faithful to equational logic are those that are terminating and
confluent. Systems where one or both of these properties fail will produce
misleading results when animated in this way.

Note that for ADTs, we are interested in applying rewrite rules to ground terms as
an aid to determining the equivalence classes of the initial algebra. In fact,
CafeOBJ formally restricts the application of operations such as 'reduce' to
ground terms (but often doesn’t enforce it).


