
1

The Statechart Perspective

A statechart is an alternative means of system

specification. This specification method is particularly

oriented to “reactive systems” — that is, systems

that respond to a series of events rather than

transforming an input into an output. Such systems

may incorporate concurrent processing, and

statecharts encompass this capability.

Example 1: the cruise control system on an auto

The events are increase/decrease of speed,

application of the brake, etc., and actions include

increasing/decreasing fuel supply, shifting the car

into another gear, etc. Ordinarily examples of

reactive systems have no natural stopping point.

Example 2: a computer operating system

An operating system is the agent that carries out

physical input/output, but this is an action in

response to a request and the operating system

does not process the input or create the output

(usually). There are numerous other event/action

couplings among operating system reactions. Again,

the normal expectation is that an operating system

continues to run indefinitely.



2

Statechart Highlights

Statecharts

• take the position that states and events are the

natural medium of description for reactive systems

• focus on state transitions as basic fragments of

such descriptions

• emulate state-transition diagrams as the formal

mechanism for collecting these fragments

• compensate for the state explosion in complex

systems by replacing the “flat” unstratified view

of states with a hierarchically structured state

concept

• emphasize the visual character of descriptions to

foster our intuitive grasp of the formalism

• are amenable to animation



3

An Informal Description of Statecharts

A statechart is a finite collection of states and

transitions. A state is either a basic (i.e.,

indecomposable) state or a hierarchical state with

constituent (sub)states. A transition is a binary

relation between states.

A hierarchical state can be either an AND-state, or

an OR-state. A configuration is a global state of a

statechart. A configuration of an AND-state is a

tuple, with one component for each constituent. A

configuration of an OR-state is just the

configuration of one of its constituents. A

configuration of a basic state is the state itself.

There is a designated set, Initial, of basic states.

A transition e[c] / a is a triple — an event e, a

condition c, and an action a. The two states related

by it are called its source and destination states. If

the statechart is in a source state for the transition

e[c] / a, the event e occurs, and the condition c is

true, then the transition is enabled. The event and

condition together are referred to as the trigger of

the transition. If a transition is applied, the state

changes from the source to the destination state,

and the action is carried out. Events occurring in one

step can trigger transitions in the next step.



4

A condition is a Boolean expression. Conditions are

persistent, retaining their value until a relevant

change occurs. Atomic conditions include:

• in(s) — test if the current statechart

configuration includes the state s

• X>0 — comparisons of internal data items

An event occurs signifies a change in a condition.

Events are momentary and can be combined by

Boolean operations. Atomic events include:

• en(s) — occurs when state s is entered

• ex(s) — occurs when state s is exited

• tm(ev,t) — occurs t time units after event ev; the

clock is reset to 0 upon each occurrence of event

ev

• changed(X) — occurs when a change is made to

internal data item X

An action is a sequence of elements including:

• event generation — appearance of an event name

“sends a signal”

• operation invocation

• modifying values of variables in internal data store

through assignment statements

• includes sequential, conditional and iterative

combinations of program fragments



5

This example is drawn from N. Day, “A model checker

for statecharts”, Tech. Rpt. 93-95, Dept. Comput.

Sci., Univ. British Columbia, 1993, 98 pp.



6

Diagram Explanations

In the Traffic light statechart, there are two states

called NORMAL and FLASHING at the top level. The

dashed line within NORMAL indicates that it has two

substates named N_S and E_W, and that NORMAL is

an AND-state. Normal is the parent state, and N_S

and E_W its child states. Likewise, N_S and E_W each

have three substates, and they are OR-states. Hence

in total, there are 7 basic states, 2 OR-states, 1 AND-

state. Also, the initial states are N_S.GREEN and

E_W.RED.

Enabled transitions transform the state set.

Performing (or following, or taking) a transition

involves modifying the current configuration and

variables according to the transition relation, and the

action. Performing a set of these transitions is called

a step. Transitions in the substates of an AND-state

are performed simultaneously.

For instance, the first few steps in the preceding

example are

{N_S.GREEN, E_W.RED} →

{N_S.YELLOW, E_W.RED} →

{N_S.RED, E_W.RED} →

{N_S.GREEN, E_W.GREEN}



7

Statechart Details — What is a step?

The behavior of a system described by a statechart

is a set of possible runs, each representing the

responses of the system to a sequence of external

stimuli generated by its environment.

A run consists of a series of detailed snapshots of

the system’s situation; such a snapshot is called a

status or configuration. The first status in the

sequence is the initial status, and each subsequent

one is obtained from the previous by a step. Defining

a step precisely is therefore the essence of the

statechart concept.

A status contains information about active states and

activities, values of data-items and conditions,

generated events and scheduled actions, and

information on the system’s history.

A controlling statechart can

• start and stop activities

• generate new events

• change the values of variables

• test values of conditions and variables

• sense activity and data transmission



8

More on Transitions

Transitions can leave and enter states on any level.

For instance, the following two statecharts illustrate

OR-decomposition and are equivalent.

Version 1 Version 2

s

t

v
s

t

v

e
f

h

g
e

g

h

ff

Also, AND-decomposition allows AND-states to be re-

expressed in terms of basic states. In an AND-state

the components are said to be orthogonal, and may

be concurrently active. If an AND-state has

components with M and N basic states, then the AND-

decomposition has a state for each of the M*N state

pairs. Hence the M+N states are transformed into

M*N states, and the number of transitions is similarly

increased.



9

u

s

v

x

q

z
t

w

y

r

e
f

g

h

e m

p

e

e

n

n

v,w

v,z v,y

x,z

x,w

x,y

q r

k

k

h

q

e p

m,p
e

pe

f

g e
k

p

q

m,p

pn

k



10

Still More on Transitions

Events and transitions are each closed under Boolean

operations.

In addition to being part of a transition, actions can

appear associated with the entrance to or exit from a

state. Actions associated with the entrance to state

S are executed in the step in which S is entered.

Actions associated with the exit from S are executed

in the step when S is exited.

The events en(S) and ex(S) are sensed one step

after S was entered or exited, respectively.

Each state can be associated with static reactions in

the format e[c]/a and are executed in every step in

which the statechart is in (and not exiting) the state,

provided they are enabled.

An action a can be scheduled for d time units (steps)

following the current time by schedule(a,d), written

sc!(a,d).



11

Special Events, Conditions and Actions

Referent Events Conditions Actions

state S entered(S)

exited(S)

in(S)

activity A started(A)

stopped(A)

active(A)

hanging(A)

start(A)

stop(A)

suspend(A)

resume(A)

data D,F

condition C

read(D)

written(D)

changed(D)

true(C)

false(C)

D=F

D<F, D>F

D := exp

make_true(C)

make_false(C)

event E

action A

n-time units

timeout(E,n) schedule(A,n)



12

General Semantic Principles

A statechart is intended to describe a system that

“reacts” to external changes generated by the

system’s environment. These changes are designated

by events that are named but unelaborated. The

following assumptions guide interpretation of this

paradigm:

• reaction to external and internal events, and

changes that occur in a step, can be sensed only

after completion of the step

• events “live” for the duration of one step only —

the one following that in which they occur — and

are not “remembered” in subsequent steps

• calculations in one step are based on the situation

at the beginning of the step

• a maximal subset of non-conflicting transitions and

static reactions is always executed

• the execution of a step is assumed to be

instantaneous (i.e., takes no time) and the time

interval between the executions of two consecutive

steps in not part of step semantics.



13

Scope of Transitions

The scope of a transition is determined by the level

of the state at which it is defined — that is, the

smallest scope “containing” the transition. In the

figure below, transitions t1 and t2 have scope A, t3

has scope V, and t4 has scope U.

U

B

A

C

V

t1t2

t3

t4



14

Non-determinism and Transition Precedence

If triggers are enabled for two transitions t and t' in a

state, and t is at a higher level (i.e., larger enclosing

scope) than t', then t is taken and t' is not — higher

level transitions take precedence. However, if t and t'

are at the same level, and there are no higher level

transitions enabled, then non-determinism is

present, and two (or more, if there are more such

transitions) runs continue from this point, one for

each of the transitions.

Also, if two or more transitions are simultaneously

triggered, and their actions may cause different

changes to the internal data store, then non-

determinism is present, even if the state

configuration of the next step is uniquely determined.

A run continues for each of the possible values of the

data store.



15

Example — Automated Railcar System

This example is taken from “Executable object

modeling with statecharts” by D. Harel & E. Gery. Six

terminals are located on a cyclic path. Each pair of

adjacent terminals is connected by two rail tracks,

one for clockwise and one for counterclockwise

travel. Several railcars are available to transport

passengers between terminals. A control center

receives, processes, and sends system data to

various components.



16

Rail System Description

As the enlargement of Terminal 6 shows (see above),

each terminal has a parking area containing four

platforms. Each platform can hold a single rail car. The

four rail tracks (two incoming and two outgoing) are

connected to a rail segment that can link to any one

of the platforms.

 The terminal has a destination board for passenger

use (not shown), containing a pushbutton and

indicator for each destination terminal. Each car is

equipped with an engine and a cruise-controller for

maintaining speed. The cruiser can be off, engaged,

or disengaged. The car is to maintain maximum speed

as long as it never comes within 80 yards of another

car. A stopped car will continue its travel only if the

smallest distance to any other car is at least 100

yards. A car also has its own destination board,

similar to the one in the terminal. The control center

communicates with various system components —

receiving, processing, and providing system data.



17

System Requirements

Three “use cases” are given:

• Car approaching terminal : When the car is 100 yards

from the terminal, the system allocates it a platform

and an entrance segment, which connects it to the

incoming track. If the car is to pass through without

stopping, the system also allocates it an exit segment.

If the allocation is not completed within 80 yards of the

terminal, the system delays the car until it is ready.

• Car departing terminal : A car departs the terminal after

being parked for 90 seconds. The system connects the

platform to the outgoing track via the exit segment,

engages the car’s engine, and turns off the destination

indicators on the terminal destination board. The car

can then depart unless it is within 100 yards of another

car; if so, the system delays departure.

• Passenger in terminal : A passenger in a terminal wishes

to travel to some destination terminal, and there is no

available car in the terminal traveling in the right

direction. The passenger pushes the destination button

and waits until a car arrives. If the terminal contains an

idle car, the system will assign it to that destination. If

not, the system will send a car from some other

terminal. The system indicates that a car is available

with a flashing sign on the destination board.



18

Object-model Diagram of Railcar System



19

Top-level Statechart of Car

Operation invocation takes the form

<server> -> <operationname> (<parameters)



20

and causes the immediate execution of the method

associated with the server object’s statechart —

e.g., the action stopsAt -> add(term) adds the

terminal term to the set associated with a given car

by the stopsAt relationship.

Arrival & Departure Subcharts



21



22

Scenario Walk-through: Car Approaching Terminal

Assume the car is in its cruising state, approaching

the terminal. It receives (senses) the event

alert100(term) from its-ProximitySensor (description

not included). The car sets itsTerm to the term

received as an argument, and enters its arrival state.

In the arrival state, the right component, watchAlter,

disengages its Cruiser if it gets closer than 80 yards

as depicted by the entering the alerted state.

Meanwhile, the left component, wait-TermAck, sends

an arrival request to the Terminal by generating the

event arrivReq(this, direction), providing its own

identity and its direction of travel (direction is

computed in the Standby substate and is not shown).

The Car also checks if the Terminal it is approaching

is in the set it stopsAt, setting the mode to stop or

pass accordingly.

The static reaction at the bottom of Car adds a

terminal to the list of scheduled stops whenever a

destination is selected. The destSelected event is

generated when a passenger presses a button on

either the car’s or the terminal’s DestPanel.



23

CarHandler (substate of Terminal) Statechart



24

Walk-through Continuation — CarHandler

An arrivReq event causes the Terminal to instantiate

a new CarHandler, with the car’s identity and

direction.

CarHandler starts it existence by executing its

initialization script. Then it saves the two parameters

in variables and proceeds to ask for a platform to be

allocated. After CarHandler receives confirmation of

allocation and a platform number, it saves this in

platform, and asks for the entrance rail segment of

that direction to be moved to the platform in

question. Once that is confirmed, CarHandler

generates the event arrivAck for the car to act on,

with its own identity as parameter.

The Car in its waitEnter state then instantiates the

link to itsCarHandler and branches to stop or make a

departReq to its handler, depending on whether it is

scheduled to stop or pass through. If it must stop, a

car waits for an alertStop from itsProximitySensor,

and then leaves its arrival state. In the top-level

statechart, Car removes the current terminal from its

list of stopsAt terminals, and enters either idle or

standby, depending on its schedule. If the car is to

pass through the terminal, it waits for its departReq



25

(arrival chart) to be followed by a departAck from its

handler, and resumes cruising.

Upon receiving the departReq, the CarHandler goes

through a process like the one to set up the car’s

entrance, causing an exit rail to be connected to the

platform. It then notifies the car by departAck, waits

10 seconds, frees the exit and platform, and then

terminates.

Further Features of StateCharts

Statecharts also contain “history connectors” that

permit state changes to be history sensitive (a

resume semantics), plus primitives for clearing

histories in several ways.

Other features are event arrays and generic charts.

Activities provide for an extended complementary

but linked collection of computational facilities.

Activities are also expressed in a graphical form, and

there is a collection of coordinating mechanisms.


