
22C/55:181

1

Example program proof — sequential rule
In this example, we prove the partial correctness of a program fragment that
exchanges the values of two (integer) variables.

{A=1 ∧ B=2}
A:= A+B;
B:= A–B;
A:= A–B

{A=2 ∧ B=1}

Since sequential execution occurs twice, we will need to apply the rule twice.
Each of these steps requires the determination of a common pre/post-condition.
1. |— {A=1 ∧ B=2}
 A:= A+B
 {A=3 ∧ B=2}
by the Axiom of Assignment and logical equivalence on the pre-condition.
2. |— {A=3 ∧ B=2}
 B:= A–B
 {A=3 ∧ B=1}
by the Axiom of Assignment and logical equivalence on the pre-condition.
3. |— {A=1 ∧ B=2}
 A:= A+B;

B:=A–B
 {A=3 ∧ B=1}
by the Sequential rule using steps 1 and 2.
4. |— {A=3 ∧ B=1}
 A:= A–B
 {A=2 ∧ B=1}
by the Axiom of Assignment and logical equivalence on the pre-condition.
 5. |— {A=1 ∧ B=2}
 A:= A+B;

B:=A–B;
A:= A–B

 {A=3 ∧ B=1}
by the Sequential rule using steps 3 and 4.

To develop this proof, you need to discern an appropriate intermediate assertion
that prevails between each pair of statements. With assignment, it is natural to
work backward, to determine these. Then work your way along using the
sequential execution rule. Determining the intermediate assertions is frequently
an iterative process since to go from one step to the next using the Axiom of
Assignment, you may need to strengthen the pre-condition or weaken the post-
condition, and these adjustments often propagate to the adjoining steps.

