Equality and Rewriting Variations

We have already explored CafeOBJ's use of the rewriting relation $\stackrel{*}{\Rightarrow}$ in place of equality, and some of the considerations that arise. CafeOBJ provides three other alternatives for tem relationships (plus another ':is' for sorts). These relations are:

- _==_ for equality.
- _==>_ for transitions, and
- _=*=_, _=b=_ for behavioral equivalence (i.e., indistinguishability).

Equality Predicate

The equality predicate (==) is a vital operation of the system. It can be reliably used to test the equality of terms of the visible sorts when the \Rightarrow relation is confluent and terminating.

Transition Predicate

The transition predicate (==>) is an "oriented" version of equality for visible sorts. A transition relation is reflexive and transitive, but the symmetric property of equality (X=Y implies Y=X) is omitted. Transitions are regarded as (normally) irreversible changes. However, the relation ==> can be regarded as being defined by means of the following scheme of equality rules:

for each visible sort S	eq X:S ==> X = true
for trans T => T1	eq T ==> T1 = true
for ctrans T => T1 if C	ceq T ==> T1 = true if C
and for each	
op f : S1 … Sn -> S	ceq f(X1:S1,, Xn:Sn) ==> f(Y1:S1,, Yn:Sn) = true
	if X1 ==> Y1 and and Xn ==> Yn.
This omits the transitive property. The direct way to express transitivity would be	

This omits the transitive property. The direct way to express transitivity would be ceq X:S ==> X1:S = true if X ==> Y:S and Y ==> X1.

However, such a rule involves a variable in the condition that does not appear in the left-hand side of the rule and is therefore prohibited. So instead CafeOBJ defines the operator "_=(*)=>_" that is defined to mean a transition in an arbitrary number of steps, and the transitive property becomes the rule

ceq X:S ==> Y:S = true if X =(*)=> Y.

Behavioral Equivalence Predicate

Lastly, behavioral equivalence (=*=) is defined for each hidden sort. Recall that behavioral operators (declared with **bop**) have exactly one argument with a hidden sort. The implication that two values of hidden sort H are indistinguishable is not fully captured by CafeOBJ's behavioral equivalence. The system uses only selectors (attributes as CafeOBJ calls them) with a single argument, $f: H \rightarrow P$, and if these are f1, f2, ... fn, then

eq X:H =*= Y:H = f1(X) == f1(Y) and ... and fn(X) == fn(Y).

Evaluation alternatives

There are three evaluation commands in CafeOBJ. They differ in the rules they employ during reduction, and in where they use them. In particular

- reduce and breduce use only equations, transitions are excluded,
- execute uses all the rules, and
- reduce and execute use behavioral rules only on subexpressions of a selector operation, while breduce uses them on all subexpressions.