
Equality and Rewriting Variations

We have already explored CafeOBJ‘s use of the rewriting relation *⇒ in place of
equality, and some of the considerations that arise. CafeOBJ provides three
other alternatives for tem relationships (plus another ':is' for sorts). These
relations are:

• _==_ for equality.
• _==>_ for transitions, and
• _=*=_, _=b=_ for behavioral equivalence (i.e., indistinguishability).

Equality Predicate
The equality predicate (==) is a vital operation of the system. It can be reliably
used to test the equality of terms of the visible sorts when the ⇒ relation is
confluent and terminating.

Transition Predicate
The transition predicate (==>) is an “oriented” version of equality for visible sorts.
A transition relation is reflexive and transitive, but the symmetric property of
equality (X=Y implies Y=X) is omitted. Transitions are regarded as (normally)
irreversible changes. However, the relation ==> can be regarded as being
defined by means of the following scheme of equality rules:

for each visible sort S eq X:S ==> X = true
for trans T => T1 eq T ==> T1 = true
for ctrans T => T1 if C ceq T ==> T1 = true if C

and for each
op f : S1 … Sn -> S ceq f(X1:S1, … , Xn:Sn) ==> f(Y1:S1, … , Yn:Sn) = true

if X1 ==> Y1 and … and Xn ==> Yn.
This omits the transitive property. The direct way to express transitivity would be

ceq X:S ==> X1:S = true if X ==> Y:S and Y ==> X1.
However, such a rule involves a variable in the condition that does not appear in
the left-hand side of the rule and is therefore prohibited. So instead CafeOBJ
defines the operator “_=(*)=>_” that is defined to mean a transition in an arbitrary
number of steps, and the transitive property becomes the rule

ceq X:S ==> Y:S = true if X =(*)=> Y.

Behavioral Equivalence Predicate
Lastly, behavioral equivalence (=*=) is defined for each hidden sort. Recall that
behavioral operators (declared with bop) have exactly one argument with a
hidden sort. The implication that two values of hidden sort H are indistinguishable
is not fully captured by CafeOBJ‘s behavioral equivalence. The system uses only
selectors (attributes as CafeOBJ calls them) with a single argument, f : H -> P,
and if these are f1, f2, … fn, then

eq X:H =*= Y:H = f1(X) == f1(Y) and … and fn(X) == fn(Y).

Evaluation alternatives
There are three evaluation commands in CafeOBJ. They differ in the rules they
employ during reduction, and in where they use them. In particular

• reduce and breduce use only equations, transitions are excluded,
• execute uses all the rules, and
• reduce and execute use behavioral rules only on subexpressions of a

selector operation, while breduce uses them on all subexpressions.

