
22C/55:181

1

Reasoning about Z specifications

A primary purpose of formal specification methods is to be able to make
deductions about the behavior of any implementation that realizes a formal Z
specification. In this episode, we will examine an example of reasoning from a Z
specification. In particular, we explore a significant aspect of the coherence (i.e.,
consistency) of Z specifications.

One thing we certainly wish to be confident about a specification is that a state
invariant actually is invariant. That is, for each D operation, we should be able to
deduce from the pre/post-conditions that if the invariant is true before the
operation is performed, it is still true after the operation is performed. For our first
instance of proving from a Z specification, we shall again refer to Diller’s
telephone database example. We will not formally establish the invariant for all
operations, but will explore a couple of instances.

The first operation schema we pursue is AddEntry. We prove that
AddEntry Ÿ dom telephones Õ members fi dom telephones' Õ members'.

The first step is to expand the schema into the appropriate logical formulas to
obtain

(name? Œ members
Ÿ name? |Æ newnumber? œ telephones
Ÿ telephones' = telephones » {name? |Æ newnumber?}
Ÿ members' = members)

Ÿ dom telephones Õ members
fi dom telephones' Õ members'.

The implication follows in four simple steps.
dom telephones'
= dom telephones » {name?}, since telephones' = telephones

» {name? |Æ newnumber?}
Õ members » {name?}, since dom telephones Õ members
= members, since name? Œ members
= members', since members' = members.

22C/55:181

2

Next we examine the state invariant for an apparently more interesting case, the
RemoveMember schema — this schema changes both state variables.

We prove that
RemoveMember Ÿ dom telephones Õ members fi dom telephones' Õ members'.

Again, the first step is to expand the schema into the appropriate logic formulas
to obtain

(name? Œ members
Ÿ members' = members \ {name?}
Ÿ telephones' = {name?} <–| telephones)

Ÿ dom telephones Õ members
fi dom telephones' Õ members'.

This is easily proven by
dom telephones'
= dom telephones \ {name?} since telephones' = {name?} <–| telephones)
Õ members \ {name?} since dom telephones Õ members
= members'.

Proofs of the state invariant for the other D operation schemas are similar. Internal
inconsistency is a fatal flaw for a formal specification, but may be difficult to detect.
Verifying that the written operation specifications logically imply all invariants are
preserved is therefore a useful check to perform.

