
22C/55:181

1

Order-sorted ADTs

The idea of sort ordering is to allow the specification to prescribe a subset relation
between types of data. For example, in ordinary mathematics Integer < Rational for
these two kinds of numbers since every Integer is a Rational number. In the
computer programming context, this addition allows a specification to describe
inheritance behavior (operations defined on a superset are defined on the subset)
and expands ADT expressiveness into the object-oriented domain. It turns out that
it also provides a means to deal clearly and succinctly with exceptional behavior
specification, avoiding numerous extra equations.

Definition: an order-sorted ADT is an algebraic ADT augmented with a partial order,
≤, on the collection of sorts. The partial order on sorts provides a subsort order that
imposes a restriction on the algebras that serve as models. Namely, for sorts s1 and
s2, if s1 ≤ s2, an algebra A is a model of the ADT only if all equations are satisfied
and As1 ⊆ As2, where As is the collection of all values in A of sort s (the carrier of s).
The subsort order is given by a collection of declarations, si ≤ sj, that is understood to
determine a partial order (i.e., si ≤ sj ∧ sj ≤ sk ⇒ si ≤ sk).

To form the term algebra, T(Σ,∅), wherever a term of sort s2 is allowed, any term of
sort s1 may appear, if s1 ≤ s2. We also allow operation “overloading”, that is the
same function name is permitted to have more than one signature. However, we
require the monotonicity condition, that if σ: w1 → s1, σ: w2 → s2, and w1 ≤ w2,
then s1 ≤ s2. The monotonicity condition reflects the assumption that the function σ:
w2 → s2 “extends” the function σ: w1 → s1 — that is, on the common elements of
sort w1, these are the same functions. For instance, with Int<Rat, +: Int, Int → Int and
+: Rat, Rat → Rat are the same when applied to integers.

An object of an order-sorted ADT may have several sorts (types) since sets of
type values are allowed to have a nesting relationship. In the case of number
relationships, a value can be both a natural number and an (signed) integer, or both
an integer and a rational number (or all three). An operation defined for one sort is
therefore expected to be defined for subsorts. For instance, division is defined for
rational numbers, and therefore it is defined for integers (but yields a rational).

In the order-sorted case, we never have a single TOI — as long as there are
subsorts, we will have multiple TOIs. For each sort s, we will have equivalence
between objects of that sort, ≡s. This is an equivalence determined in the usual way,
but there is the extra proviso that if s1 ≤ s2, then ≡s1 ⊆ ≡s2. For instance, with
Int<Rat, if two objects are equal as integers, they are also valid rationals, and they
must be equal as rationals as well.

Definition: the initial algebra of an order-sorted ADT consists of the equivalence
classes of well-formed ground terms T(Σ,∅) just as in the non order-sorted case,
where equivalence must be provable from the equational axioms. An equivalence
class may contain terms of several sorts.

22C/55:181

2

Definition: the final algebra of an order-sorted ADT consists of the
indistinguishability classes of ground terms T(Σ,∅) just as in the non order-sorted
case, where to be indistinguishable two objects must be members of a common
sort so that the same operations are applicable to them, and must yield the same
element of a pre-defined type whenever the same operations are applied to them.

The sort of a class in either case is the smallest sort of any term contained in the class.

Example — Order-Sorted Stack of Integers
Signature (Σ)

sorts: Stack, NeStack, and Int (pre-defined)
subsorts: NeStack < Stack

NEW: → Stack
PUSH: Stack × Int → NeStack
POP: NeStack → Stack
TOP: NeStack → Int

Equations
POP(Push(s,i)) = s
TOP(PUSH(s,i)) = i

This is it — errors and all! The intuition is that the subsort NeStack (for non-empty
stacks) isolates the exceptional element for the ADT. Actually errors are implicitly
indicated by the impossibility of applying some operations to the values that would
produce exceptions. We understand that it is incorrect (technically impossible
according to the operation signatures) to apply either POP or TOP to the empty
stack NEW, so the specification leaves unsaid further details about these
circumstance.

The initial and final algebra views are the same for this example, as we will see as
we examine the equivalence classes. First of all note that the order-sorted signature
substantially changes the term algebra and the equivalence classes — that is, well-
formed terms must respect the type signature of the operations, so terms of the
form POP(POP(…)) are not “type respecting” and do not belong to the collection of
well-formed ground terms, T(Σ,∅). In fact, the signature alone now forbids all terms
that would cause an exception (or error)!

NEW and PUSH still serve as constructors in this order-sorted version. If we
consider the initial algebra of equivalence classes of terms, the canonical
representatives of equivalence classes are still provided by these operations,
however the equivalence classes contain different terms than in the non-sorted
version.

[NEW] = {NEW} ∪
{POP(PUSH(NEW,i)) | i∈Int} ∪
{POP(PUSH(POP(PUSH(NEW,i1)),i2)) | i1,i2∈Int} ∪ …

[PUSH(NEW,i1)] = {PUSH(NEW,i1)} ∪
{POP(PUSH(PUSH(NEW,i1),i2)) | i2∈Int} ∪
{PUSH(POP(PUSH(NEW,i2)),i1) | i2∈Int} ∪ …

etc.

22C/55:181

3

Notice that the class algebra T(Σ,∅)/≡ is sufficiently complete — every well-formed
ground term of sort Int can be proven equivalent to some term in Int.

Can we POP “twice in a row” in this ADT? Note that
POP(POP(PUSH(PUSH(NEW,1),2)))

is ill-typed (i.e., not in T(Σ,∅)), but
POP(PUSH(PUSH(NEW,1),2))

is well formed and equivalent to PUSH(NEW,1). And POP(PUSH(NEW,1))
≡ NEW, so POP(PUSH(NEW,1)) ∈[NEW], but

POP(POP(PUSH(PUSH(NEW,1),2)))
is not among the well-formed terms T(Σ,∅)! So applying the POP operation
unconditionally twice in a row is not possible! Substituting equals for equals is
restricted by the requirement to form terms that are type correct. This provides an
implicit indication of the necessity of dynamic testing of the result of a POP operation
— it may be of type NeStack, or it may not. In the initial algebra, to apply an
operation f to an equivalence class [t], there must be a term t’∈[t] so that f(t’) is well
formed, then the result f([t]) is [f(t’)].

In the initial algebra, the sort NeStack consists of all the equivalence classes except
[NEW] — [NEW] has no terms of sort NeStack, and all the other classes do. Hence
we see that this specification is sufficiently complete since for all the terms t in
NeStack classes, TOP(t) is equivalent to a term in pre-defined type Int. Also in the
final algebra, terms from two different classes can be distinguished by suitable use
of POP and TOP so indistinguishability classes are the same.

