
22C/55:181

1

Hierarchical state terminology
The substates of a hierarchical state are said to be child states, and the
hierarchical state is known as the parent state. Since a child state may again be
a hierarchical state, this relationship may be extended over several generations.
Thus we also speak of ancestor and descendent states. States are permitted to
have the same names if they have different parent states — “fully qualified
pathnames” formed by attaching ancestor names separated by '.' may be used
for disambiguation

Further rules for events
• If a system is in state S, then not only is in(S) true, but in(T) is true for each

ancestor T of S.
• Entering a state S will trigger event en(S), as well as en(T) for every ancestor

of S in which the system did not reside when S was entered.
• Exiting a state S will trigger the event ex(S), as well as ex(T) for each

ancestor T of S in which the system does not reside after the transition.

For example, in the statechart

t

T

QS

R

after transition t
en(S) = true
en(T) = true
en(R) = false

22C/55:181

2

Another example:

History entrances
With the “sequential machine” model, nothing is “remembered” about the
sequence of transitions that led to a state — in fact, the point is that the state
represents the model’s memory of past events, its entire memory! This is no
longer the case with statecharts, and there are several components of memory of
past activity. For one thing, statecharts have variables that may be assigned
values and subsequently tested. These variables provide a means to record
selected information for later use. Also, both events and activities can be
schedules for the future. Therefore, some component of the system must have
an implicit memory to retain knowledge of these actions until they are to occur.

History entrances provide a means to extend this to past state behavior. A history
entrance is another pseudo-state — rather than convey a configuration of the
system, the history connector has a semantic meaning. A transition to a history
connector indicates that the next state in the group should be the last one visited
(i.e., resume semantics). The history connector also has a regular outgoing
transition showing the state to be entered if there is no history (e.g., entry for the
first time).

R S TQ

P

U V

t
if the configuration is
(R,S), after transition t
en(S) = true
en(T) = false
en(P) = false

22C/55:181

3

History example 1

The history connector specified in this figure indicates an entrance by history on
the first level only — whenever the 'sensor_conn' event occurs, the
CONNECTED component resumes in the state it was last in. However, if state
OPERATING had substates (e.g., SLOW and FAST), its last substate would not
be remembered, and the resume would use whatever is the initial state. If this
were desired, there is a deep history connector that is denoted by H*.

processing

disconnected

connected
idle

operating

sensor_conn

sensor_dis

H

22C/55:181

4

History example 2

In this example with the deep history connector, if the system was last in
OPERATING.FAST, then that would be the state entered despite the fact that
SLOW is the initial state.

With the addition of history connectors, it becomes important to include the
capability to “reset” histories. For instance, if we were to add a HALT event for
the processing state, it may be natural for the next entrance to OPERATING to
be to the initial state regardless of past behavior. For this purpose, two actions
are provided, history_clear(S), abbreviated hc!(S), and deep_clear(S),
abbreviated dc!(S). The action hc!(S) deletes the history information for state S,
but not its descendents. That is, the next time a history (or deep history)
connector in state S is entered, the behavior is as if it were the first time. The
action dc!(S) deletes the history information for S and all its descendent states.

processing

disconnected

connected
idlesensor_conn

sensor_dis

operating

fast slow

H*

22C/55:181

5

Actions
The presence of actions in transitions enhances their passive character, and
provides a general processing capability. Basic actions are available to
manipulate each of the three types of elements: events, conditions, and
variables.

For events, a primitive action is gen(EVENT), mentioning an event name — this
causes the named EVENT to be sensed in the next step.

The most primitive form of a condition is a Boolean variable. Such a condition C
can be manipulated by assignment (as can any other variable), C:= false.
Associated with such a variable are two events, true(C) and false(C) that occur
precisely when C changes, respectively, to true or false. Note that these events
only occur when there is a change — if C is already false, then C:= false does
not cause the event false(C)!

General data variables can be assigned in the same way as condition variables.
All variable values are persistent — they are available until they are changed.
Whenever an assignment to variable X takes place, the event written(X),
abbreviated wr(X), occurs. There is also a similar event, changed(X) that occurs
when X is changed.

Compound actions
Any sequence of actions can serve as an action. In addition, conditional actions
(i.e., if-then-else), iterative actions (while loops), procedures, etc. can be utilized.
The Rhapsody system also provides a “macro” tool where a code fragment is
placed in their Data Dictionary. The precise notation is left unstated here — the
Rhapsody tool has versions supporting three languages: C/C++/Java.

When a sequence of actions involves multiple assignments, the timing of access
can be troublesome. Recall that the values of variables used in an action are
those at the beginning of a step. Hence in a sequence such as X:= 1; Y:= X; the
value of X accessed in the second assignment. Since this is sometimes
inconvenient, the Rhapsody system provides a Rhapsody allows. context
variables denoted by a prefixed '$'. Context variables have scope local to an
action, and values are those last assigned during the action.

22C/55:181

6

Splitting up charts
The statechart methodology is inherently hierarchical and this greatly facilitates
the development of models. However, the graphical nature of statecharts means
that even moderately complex descriptions may not neatly fit a page. In fact, just
a few levels of nesting may lead to this difficulty. So statecharts use a referential
mechanism to allow flexible pagination. For example,

may be depicted as

A

A1 A2

A11

A12

A21

A22

A

A1

A2

A11

A12

A21

A22

@A2

22C/55:181

7

The reference notation @A designates a physical rearrangement, not a logical
rearrangement. That is, the parent/child relationships are not altered by this
relocation of the subchart to another physical page.

This relocation of a subchart to another physical page makes the representation
of transition arrows more inconvenient. To facilitate this, another form of
“connector” is provided — the off-page connector. We have already seen the
use of condition and history connectors. In a similar spirit, off-page connectors
are pseudo-states and are named for identification purposes. They must appear
in both the referring box and in the defining subchart diagram with conforming
transitions. This is illustrated below.

MAIN OFF

@ON
TESTING

ON

PROCESSING IDLE

GO TO TS

ET

GO TO

TS

ETH

TE STT_OUT

GO

END

TE ST

ET ES T

TURN_ON
TURN_OFF

GO

