Behavioral equations example

```
module* NAT-STREAM {
protecting (SIMPLE-NAT)
*[ Stream ]*
bop __ : Nat Stream -> Stream
bop hd : Nat Stream -> Nat
bop tl : Nat Stream -> Stream
op zeros: -> Stream
var N : Nat
var S:Stream
eq hd (N S) = N .
beq tl(N S) = S .
eq hd zeros = 0 .
beq tl zeros = zeros . -- indistinguishable, not equal
}
```

From this $\mathrm{tl}(\mathrm{s}(0)$ zeros) is not known to equal zeros, only behaviorally equal (l.e., indistinguishable). However, hd(tl(s(0) zeros)) is equal to hd(zeros).

Objects of a hidden sort are never "seen" by anyone. CafeOBJ rules require that operations on a hidden sort be declared "behavioral" (bop) and their properties be expressed as 'beq' (or bceq).

Matching under assoc/comm

CafeOBJ provides several "equational theory attributes". Most useful are commutativity and associativity since both properties are frequently desirable but lead to non-terminating rewrite rules. When 'assoc' or 'comm' is declared for an operation, the system considers all appropriate rearrangements when searching for a substitution. For instance, in CafeOBJ '_and_' is associative. op_and_: Bool Bool -> Bool \{ assoc \}
so that a term
true and false and true
is equal to
(true and false) and true
and to
true and (false and true).
So for example, the rewrite rule eq true and $\mathrm{X}: \mathrm{Bool}=\mathrm{X}$.
does not directly apply to the term
(true and false) and true, but it none-the-less matches and yields false and true.

Proving options

The rewriting facilities can in fact be used to accomplish proofs of some (simple) assertions. For instance, in the SIMPLE-NAT module, there are only the equations
eq $0+N=N$.
eq $s(N)+M=s(N+M)$.
This only requires that 0 behave as we expect when used on the left (i.e., no 'comm' attribute). We can have the system perform the steps of an induction proof that 0 also behaves as we expect when used on the right.
open SIMPLE-NAT
SIMPLE-NAT > op a : -> Nat . -- 'a' is a new unrestricted constant of sort Nat
SIMPLE-NAT > reduce $0+0$. -- basis case
0 : Zero
-- 0 on right of 0 is OK
SIMPLE-NAT > eq a +0 . -- induction hypothesis: assume 0 on right of 'a' is OK
SIMPLE-NAT > reduce $s(a)+0$.
$s(a):$ NzNat -- induction extended — OK on next, proof complete
close

