Control Structures and Proof Rules

We will consider the three basic control structures of imperative programming. A *command* C denotes a (possibly compound) statement formed form the atomic statements using the control structures. A series of commands can be enclosed in **begin** ... **end** to form a single syntactic unit. The control structures we investigate are (where B is a Boolean-valued expression):

- sequential execution $-C_1$; C_2
- conditional if B then C_1 else C_2
- while-loop while B do C

Each of these control structures has an associated proof rule — based on properties of its components, we infer properties of the compound statement. These are as follows:

Sequential rule

 $\mid = \{P\} C_1 \{Q\}, \mid = \{Q\} C_2 \{R\}$

 $\mid = \{P\} \, C_1 \ ; C_2 \left\{R\right\}$

Conditional rule

 $\mid = \{P \land B\} C_1 \{R\}, \mid = \{P \land \neg B\} C_2 \{R\}$

 $|-\{P\}$ if B then C₁ else C₂ {R}

While rule

 $|- \{P\}$ while B do C $\{P \land \neg B\}$