Control Structures and Proof Rules

We will consider the three basic control structures of imperative programming. A command C denotes a (possibly compound) statement formed from the atomic statements using the control structures. A series of commands can be enclosed in `begin ... end` to form a single syntactic unit. The control structures we investigate are (where B is a Boolean-valued expression):

- sequential execution — $C_1; C_2$
- conditional — `if B then C_1 else C_2`
- while-loop — `while B do C`

Each of these control structures has an associated proof rule — based on properties of its components, we infer properties of the compound statement. These are as follows:

Sequential rule

$$\frac{|- {\langle P \rangle \ C_1 \ \{Q\}}, \ |- \ {\langle Q \rangle \ C_2 \ \{R\}}}{|- {\langle P \rangle \ C_1 ; C_2 \ \{R\}}}$$

Conditional rule

$$\frac{|- {\langle P \parallel B \rangle \ C_1 \ \{R\}}, \ |- \ {\langle P \parallel \parallel B \rangle \ C_2 \ \{R\}}}{|- {\langle P \rangle \ \text{if} \ B \ \text{then} \ C_1 \ \text{else} \ C_2 \ \{R\}}}$$

While rule

$$\frac{|- {\langle P \parallel B \rangle \ C \ \{P\}}}{|- {\langle P \rangle \ \text{while} \ B \ \text{do} \ C \ \{P \parallel \parallel B\}}}$$