
22C/55:181

Loop Invariants

In the while-rule
|— { P Ÿ B } p { P }

|— { P } while B do p { P Ÿ ÿB }

the formula P is called the loop invariant because each iteration of the body of
the loop preserves the truth of P (assuming the loop guard B is also true). The
primary challenge in proving loops is in the formulation of a suitable loop
invariant.

This approach to understanding loops is much different from the usual repetitive
execution concept. In fact, there is nothing in the while-rule that explicitly requires
the loop body to be executed repeatedly! And the loop invariant focuses on what
stays the same rather than what changes — it is static not dynamic.

With the loop invariant approach, it is helpful to think of a loop as producing a
series of improving approximations to the desired result. Each iteration improves
an approximation until the series “converges” to the desired condition and the
loop terminates.

David Gries says one should never write a loop without writing down the loop
invariant. It is often difficult to come up with a loop invariant, but this may be
taken as a signal that we do not understand the loop as well as we might. Loops
provide one of the most common sources of programming errors, so any aid to
improving our understanding of loops should lead to programs that are more
reliable.


