Example Axiomatic Proof

The Fibonacci numbers are a sequence of integers defined recursively by

$$
\begin{aligned}
& \operatorname{fib}(1)=\operatorname{fib}(2)=1, \text { and } \\
& \operatorname{fib}(N)=\operatorname{fib}(N-1)+\operatorname{fib}(N-2), \text { for } N>2
\end{aligned}
$$

When defined in this usual way, the naturally corresponding recursive program is clearly correct but highly inefficient. We prove that the following iterative program fragment is correct - it's totally correct, but we only exhibit the partial correctness proof.

```
            { N\geq1 }
NEW:= 1; OLD:= 1; I:= 2;
        {P}
        while I<N do
    begin I:= I+1; NEW:= NEW+OLD;
    OLD:= NEW-OLD end
        { NEW = fib(N) }
```

Proof:
Step 1: discover the loop invariant \mathbb{P}
Take $P \equiv(2 \leq I \leq N \wedge N E W=f i b(I) \wedge O L D=f i b(I-1)) \vee(I=2 \wedge N=1 \wedge N E W=1)$

Step 2: Show $\vdash\{\mathrm{N} \geq 1\}$ NEW:=1; OLD:=1; $\mathrm{I}:=2\{\mathbb{P}\}$
Try these details as an exercise - just uses Assign and SEQ.

Step 3: Show $\vdash\{\mathbb{P}\}$ while...$\{$ NEW $=\mathrm{fib}(\mathrm{N})$ \}
This step is established through several intermediate steps.
Step 3A: Find \mathbb{Q}_{1} and \mathbb{Q}_{2} to show

$$
\begin{array}{cl}
& \vdash\{\mathbb{P} \wedge \mathrm{I}<\mathrm{N}\} \\
\text { begin } \quad & \mathrm{I}:=\mathrm{I}+1 ; \\
& \left\{\mathrm{Q}_{1}\right\} \text { NEW:= NEW+OLD; } \\
& \left\{\mathrm{Q}_{2}\right\} \text { OLD:= NEW-OLD } \\
\text { end }
\end{array}
$$

 \(\{\mathbb{P}\}\)
 Step 3Ai: formulate $\mathbb{Q} 1$

Take $\mathbb{Q}_{1} \equiv 3 \leq \mathrm{I} \leq \mathrm{N} \wedge \mathrm{NEW}=\mathrm{fib}(\mathrm{I}-1) \wedge \mathrm{OLD}=\mathrm{fib}(\mathrm{I}-2)$
Step 3Aii: Show $\vdash\{\mathbb{P} \wedge \mathrm{I}<\mathrm{N}\} \mathrm{I}:=\mathrm{I}+1\left\{\mathbb{Q}_{1}\right\}$
It can be seen that $(\mathbb{P} \wedge \mathrm{I}<\mathrm{N}) \Rightarrow \mathbb{Q}_{1}[\mathrm{I} \rightarrow \mathrm{I}+1]$ so by Assign axiom and rule
for and Strengthening pre-conditions, step 3Aii holds.
Step 3Aiii: formulate \mathbb{Q}_{2}
Take $\mathbb{Q}_{2} \equiv 3 \leq \mathrm{I} \leq \mathrm{N} \wedge \mathrm{NEW}=\mathrm{fib}(\mathrm{I}) \wedge \mathrm{OLD}=\mathrm{fib}(\mathrm{I}-2)$
Step 3Aiv: show $\vdash\left\{\mathbb{Q}_{1}\right\}$ NEW:= NEW+OLD $\left\{\mathbb{Q}_{2}\right\}$
Try this - direct application of Assign axiom.
Step 3Av: show $\vdash\left\{Q_{2}\right\}$ OLD:= NEW-OLD $\{\mathbb{P}\}$
One can see that $\mathbb{Q}_{2} \Rightarrow \mathbb{P}[O L D \rightarrow$ NEW-OLD] so that by Assign axiom and rule for Strengthening pre-conditions, this step is proven Step 3Avi: by steps 3Aii, $3 A i v$, and $3 A v$ and the rule for sequential execution (applied twice), the proof of step 3 A is complete.

Step 3B: by step 3A and the rule for while loops we have $\vdash\{P\}$ while $I<N$ do begin \ldots end $\{P \wedge I \geq N\}$. Now, $P \wedge I \geq N$ implies either
$\mathrm{I}=2 \wedge \mathrm{~N}=1 \wedge \mathrm{NEW}=1$, and hence $\mathrm{NEW}=\mathrm{fib}(\mathrm{N})$
or
$2 \leq I=N \wedge N E W=f i b(I) \wedge O L D=f i b(I-1)$, and hence $N E W=f i b(N)$

Step 4: By steps 2 and 3 and the post-condition Weakening rule, the program is proven.

