Equivalence Relations

Definition: for sets S and T, the **Cartesian product** S × T is just the set of all *ordered* pairs, $S \times T = \{ <s,t > | s \in S \text{ and } t \in T \}.$

Definition: a **binary relation** ρ on set S is a subset $\rho \subseteq S \times S$. For a pair $\langle x, y \rangle \in \rho$, we may alternatively write $x \rho y$.

Definition: a binary relation ρ on set S is an **equivalence relation** provided

(1) $\mathbf{x} \rho \mathbf{x}$ for all $\mathbf{x} \in \mathbf{S}$, (**reflexive** property)

(2) if x ρ y, then y ρ x (**symmetric** property), and

(3) if x ρ y and y ρ z, then x ρ z (**transitive** property).

For each set S, there are two "extreme" equivalence relations — the *identity* relation $I_S = \{<x,x> | x \in S\}$, and the *universal* relation $U_S = S \times S$. With the identity relation each element is equivalent to only itself, and with the universal relation each element is equivalent to every other.

Definition: for an equivalence relation ρ on set S and $x \in S$, the **equivalence class** of x is $[x]_{\rho} = \{y \in S \mid x \rho y\}$; if the equivalence relation ρ is understood from context, we may just write [x].

For the identity relation there is a distinct equivalence class for each element containing only that one element. For the universal relation, there is one equivalence class containing all elements.

Definition: a collection (finite or infinite) of nonempty subsets of set S, $S_1, S_2, ... \subseteq S$ is a **partition** of S provided that:

(1) $S = \bigcup S_k$ (exhaustive),

(2) $S_i \cap S_j = \emptyset$ if $i \neq j$ (mutually exclusive). The subsets S_i are called the **blocks** of the partition.

Assertion: if ρ is an equivalence relation on set S, then the equivalence classes under ρ form the blocks of a partition of S; conversely, for any partition on S, there is an equivalence relation on S whose equivalence classes are the blocks of the partition.

Definition: An equivalence relation ρ on set S is a **congruence** for function f: S \rightarrow S if for each s,s' \in S so that s ρ s', f(s) ρ f(s').

For a congruence, every pair of elements in a common equivalence class is mapped by f to another pair of elements in a common equivalence class, or more briefly, the function preserves the equivalence. In an analogous way we may also speak of an equivalence being a congruence for a function that takes several arguments — whenever each argument is replaced by an equivalent element, the operation produces a result equivalent to the result with the original arguments. And in one last extension, we may speak of an equivalence being a congruence with respect to a *collection* of functions, meaning it is a congruence for each of the functions in the collection.