Equivalence Relations

Definition: for sets S and T , the Cartesian product $\mathrm{S} \times \mathrm{T}$ is just the set of all ordered pairs, $\mathrm{S} \times \mathrm{T}=\{\langle\mathrm{s}, \mathrm{t}\rangle \mid \mathrm{s} \in \mathrm{S}$ and $\mathrm{t} \in \mathrm{T}\}$.

Definition: a binary relation ρ on set S is a subset $\rho \subseteq S \times S$. For a pair $\langle x, y>\in \rho$, we may alternatively write $\mathrm{x} \rho \mathrm{y}$.

Definition: a binary relation ρ on set S is an equivalence relation provided
(1) $\mathrm{x} \rho \mathrm{x}$ for all $\mathrm{x} \in \mathrm{S}$, (reflexive property)
(2) if $x \rho y$, then $y \rho x$ (symmetric property), and
(3) if $x \rho y$ and $y \rho z$, then $x \rho z$ (transitive property).

For each set S, there are two "extreme" equivalence relations - the identity relation IS $=\{\langle x, x\rangle \mid x \in S\}$, and the universal relation $\mathrm{U}_{\mathrm{S}}=\mathrm{S} \times \mathrm{S}$. With the identity relation each element is equivalent to only itself, and with the universal relation each element is equivalent to every other.

Definition: for an equivalence relation ρ on set S and $x \in S$, the equivalence class of x is $[x]_{\rho}=$ $\{y \in S \mid x \rho y\}$; if the equivalence relation ρ is understood from context, we may just write [x].

For the identity relation there is a distinct equivalence class for each element containing only that one element. For the universal relation, there is one equivalence class containing all elements.

Definition: a collection (finite or infinite) of nonempty subsets of set $S, S_{1}, S_{2}, \ldots \subseteq S$ is a partition of S provided that:
(1) $\mathrm{S}=\underset{\mathrm{k}}{\cup} \mathrm{S}_{\mathrm{k}}$ (exhaustive),
(2) $\mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing$ if $\mathrm{i} \neq \mathrm{j}$ (mutually exclusive).

The subsets S_{i} are called the blocks of the partition.

Assertion: if ρ is an equivalence relation on set S, then the equivalence classes under ρ form the blocks of a partition of S; conversely, for any partition on S , there is an equivalence relation on S whose equivalence classes are the blocks of the partition.

Definition: An equivalence relation ρ on set S is a congruence for function $f: S \rightarrow S$ if for each $\mathrm{s}, \mathrm{s}^{\prime} \in \mathrm{S}$ so that $\mathrm{s} \rho \mathrm{s}^{\prime}, \mathrm{f}(\mathrm{s}) \rho \mathrm{f}\left(\mathrm{s}^{\prime}\right)$.

For a congruence, every pair of elements in a common equivalence class is mapped by f to another pair of elements in a common equivalence class, or more briefly, the function preserves the equivalence. In an analogous way
we may also speak of an equivalence being a congruence for a function that takes several arguments - whenever each argument is replaced by an equivalent element, the operation produces a result equivalent to the result with the original arguments. And in one last extension, we may speak of an equivalence being a congruence with respect to a collection of functions, meaning it is a congruence for each of the functions in the collection.

