
22C/55:181

Conditional Equations

Using only equations between terms is often too restrictive. For instance,
suppose we are interested in the specification of Sets of Items. We introduce
operations/signatures:

EMPTY: → Set
IN: Item × Set → Boolean || test membership
ADD: Item × Set → Set || add item to set

For these operations, the semantics are expressed as “equations”
IN(i, EMPTY) = False
IN(i, ADD(j,s)) = if i=j

then True
else IN(i, s)

But this latter “equation” is not an equation between two terms, it is another kind
of construct. It cannot be immediately explained by the equivalence relation on
terms, and we lose the equational equivalence semantics.

The pure term interpretation can be relatively easily restored, but there is a price
to be paid. We introduce another function, one that is not an actual component of
the TOI. Such a function is referred to as a hidden function, and it is assumed
to be inaccessible to client code. For the Set ADT, it would be a function with the
signature

IF: Boolean × Set × Set → Boolean
with the (equational) semantics

IF(True, b1, b2) = b1
IF(False, b1, b2) = b2

We will write such conditional expressions using the if–then–else format rather
than using an 'IF' functional. However, the formal interpretation is understood
through this hidden function device. This is the first (but not last) instance where
a compromise in the perfect reflection of the abstract concept is permitted to
achieve expressiveness — hidden functions are not a conceptually required
component of the systems whose specifications we wish to express, but they are
a practical necessity.

