
22C/55:181

1

Ordered-sorts and Error/Exceptions.

The general approach for treating errors using the order-sorted concept is that for every
sort σ, we have two subsorts — σ -Ok < σ and σ -Error < σ (for greater generality we can
admit multiple error subsorts to accommodate different kinds of errors). This treatment
then requires that σ -Ok ∩ σ -Error = ∅ and σ -Ok ∪ σ -Error = σ for all sorts. If these
conditions are met by the initial algebra, the specification is called clean (M. Gogoila,
“On parametric algebraic specifications with clean error handling”, Proc. Conf. on Theory
and Practice of Software Development (TAPSOFT ’87), Springer-Verlag). Note that, as
with the OK-functions, in order to treat errors in this way, it is necessary that all pre-
defined and parameter ADTs follow the same approach.

This subsort arrangement effectively accomplishes the effect of the OK-functions
suggested earlier, but without adding the functions, their equations, and without
complicating all the normal-case equations with tests for troublesome arguments. It’s all
accomplished by the signature alone! Transferring the description of this behavior from
the semantic domain of equations to the syntactic domain of signatures is a great
simplification, and that is a very worthwhile contribution. It’s not completely without cost,
as we have some semantic subtleties that were not present with the OK-function
strategy. None-the-less, the net gain in both simplicity and brevity is a rare achievement.

Example: Tree[Entry]
This example presents the familiar binary tree using the error sort paradigm outlined
above. For specificity, it is assumed that each sort named X has a corresponding error
subsort named X-Error, and a normal subsort named X-Ok. Each X-Error subsort has a
value known as NonX (i.e., NonX: X-Error). The binary tree objects described here have
entries only in the leaf nodes — the tree provides a hierarchical organization for these
leaf entries, but non-leaf nodes contain no data.

SORTS
Tree-Error < Tree
Tree-Ok < Tree

SIGNATURES
NonTree: → Tree-Error
Leaf: Entry → Tree
Leaf: Entry-Ok → Tree-Ok
Node: Tree × Tree → Tree
Node: Tree-Ok × Tree-Ok → Tree-Ok
GetEntry: Tree → Entry
GetLeft, GetRight: Tree → Tree

22C/55:181

2

EQUATIONS
For each e1:Entry-Ok, e2:Entry-Error, t:Tree, t1,t2: Tree-Ok

Leaf(e2) = NonTree

Node(NonTree, t) = Node(t, NonTree) = NonTree
GetEntry(Leaf(e1)) = e1
GetEntry(Node(t1,t2)) = NonEntry

GetEntry(NonTree) = NonEntry
GetLeft(Leaf(e1)) = GetRight(Leaf(e1)) = NonTree

GetLeft(Node(t1,t2)) = GetRight(Node(t2,t1)) = t1
GetLeft(NonTree)) = GetRight(NonTree)) = NonTree

EQUIVALENCE CLASSES
Constructors for this ADT are Leaf and Node — every binary tree can be formed with
these operations.

[NonTree] = {NonTree, Leaf(NonEntry), Node(NonTree, NonTree),
GetLeft(Leaf(e1)), … } sort is Tree-Error

[Leaf(e1)] = [Leaf(e1), GetLeft(Node(Leaf(e1), Leaf(e1))), … } sort is Tree-Ok

[Node(Leaf(e1), Leaf(e1))] =

{Node(Leaf(e1), Leaf(e1)), GetLeft(Node(Leaf(e1), Leaf(e1)), Leaf(e1)), … }

sort is Tree-Ok
…

So there is one class in sort Tree-Error, and all others are in sort Tree-Ok. This meets
the requirement for a clean specification.

