
22C/55:181

1

Exceptions — A Counterexample

The specification
In this “example”, we re-consider the Queue ADT. To illustrate the potential
pitfalls in treating exceptions, we present a mistaken attempt to include the
treatment of errors/exceptions in its description. For brevity, we use the signature
NEW: Queue
ADD: Queue, Int → Queue
DEL: Queue → Queue ∪ {ERRORQ}

FRT: Queue → Int ∪ {ERRORI}

The situations we wish to account for are when there is an attempt to access the
front of an empty Queue, or delete the first item of an empty Queue. Neither of
these operations is possible and we wish to specify an error in these cases. To
this end, we have added idealized error elements into the appropriate domains in
the signature, and propose the equations below.

For all q∈Queue, and i,j∈Int
1. FRT(NEW) = ERRORI
2. FRT(ADD(NEW),i))= i
3. FRT(ADD(ADD(q,i),j)) = FRT(ADD(q,i))
4. DEL(NEW) = ERRORQ
5. DEL(ADD(NEW,i)) = NEW
6. DEL(ADD(ADD(q,i),j)) = ADD(DEL(ADD(q,i)),j)

Introducing these idealized error elements into the domains necessitates
specifying the behavior of the functions when such a value is an argument. We
elect the “errors propagate” paradigm. While this is often left to be implicitly
understood, to be on firm ground we need to be able to describe it in the same
way other behavior is described. So here we specify this through the equations
below.

7. FRT(ERRORQ) = ERRORI
8. DEL(ERRORQ) = ERRORQ
9. ADD(q,ERRORI) = ERRORQ
10. ADD(ERRORQ,i) = ERRORQ

Note that behaviors other than “errors propagate” may be desirable. An instance
is equation 9, where adding one error element leads to the destruction of an
entire queue of well-formed values.



22C/55:181

2

The mistake
While each of the equations in this specification appears reasonable in isolation,
together, there is a catastrophic blunder! Consider the queue

q = DEL(ADD(NEW, FRT(NEW))).
By equation 5, q ≡ NEW. However, by equation 1, q ≡ DEL(ADD(NEW, ERRORI)),

and by equations 8 and 9 DEL(ADD(NEW, ERRORI)) ≡ DEL(ERRORQ) ≡
ERRORQ. Therefore NEW ≡ ERRORQ!! And then by equations 9 and 10, every

queue is equivalent to ERRORQ!

Note that while these equivalencies are a horrible blunder and completely
invalidate the specification, this does not demonstrate an inconsistency since the
unintended collapsing occurs in the TOI, not in a pre-defined type. However, this
specification is also, in fact, inconsistent. For example consider the term
i = FRT(ADD(ADD(NEW,2), FRT(NEW)).
By equations 2 and 3, i ≡ FRT(ADD(NEW,2)) ≡ 2. But by equations 1, 7 and 9, i ≡
FRT(ADD(ADD(NEW,2), ERRORI)) ≡ FRT(ERRORQ) ≡ ERRORI. Hence ERRORI
≡ 2, an inconsistency.

One apparent solution to such problems is to condition “non-error” equations. For
example, consider

3'. FRT(ADD(ADD(q,i),j)) = if j=ERRORI then ERRORI else FRT(ADD(q,i))

However, this is not legal — only a valid Boolean expression is allowed as the
condition of an if-then-else (recall its definition)! However, this is the germ of the
idea that we do develop to reliably treat errors.


