
22C/55:181

1

Semantics of Algebraic Specifications

Given an ADT specification (Σ, e) with signature Σ and equations e, we first consider the
collection of ground terms, T(Σ ,∅). This collection itself is a data algebra for the
operations of the signature Σ. For any k-ary operation f, and t1 , t2 , … , tk∈T(Σ ,∅)
whose sorts correspond to those required by f, we have that f applied to t1 , t2 , … , tk
yields the term f(t1, t2, … , tk)∈ T(Σ, ∅). This is called the term (or free) algebra
over Σ.

Each constant is the name of some object of its sort. Each composite expression (or
term) that involves no variable also denotes some object of its sort. Together these are
the ground terms of the sort. Since a sort which contains no objects at all (and hence no
usable operations) is effectively not involved in any behavior, it makes no sense to allow
this in specifications, and we normally prohibit this.

Definition: an ADT is sensible if each sort has at least one ground term.

It is normally assumed that each ADT of interest is sensible, and the examples we
present should exhibit this property. Not only do we wish to prohibit empty sorts, but
we want to exclude the opposite extreme. The presence of potentially aberrant objects in
the sort that have no role in any operation outcome and are not denoted by any ground
term are also excluded.

Definition: The axiom of no junk for an ADT asserts that every object of every sort is
equivalent to some ground term of the ADT.

We assume the axiom of no junk for our ADTs.

Definition: In an ADT, the collection of operations whose range is a certain sort S are
called the generators of S. We sometimes identify a minimal subset of the generators
called constructors with the property that every ground term of sort S is equivalent to
some ground term involving only the constructors of sort S. That is, every object of type
S is produced by some combination of the constructor operations.

By the “no junk” axiom, the ground terms involving the generators must yield all the
objects of the sort. But it may be that even when we omit some of these operations, all
the objects still obtain. For instance, in the Stack ADT, NEW, PUSH, and POP are
generators, and NEW and PUSH serve as constructors — all stack objects can be produced
using only these operations.

Initial algebra semantics
Two terms t1, t2∈T(Σ) are equivalent with respect to eeee , t1 ≠

e
 t2 , provided that t1

= t2 can be deduced from the equations e using the properties of an equivalence relation
and substituting equals for equals. For t∈ T(Σ), let [t]

e
 = {t '∈ T(Σ) | t ≠

e
 t '} denote i t s

equivalence class. We omit the subscript indicating the equations e when this i s
understood from context.

22C/55:181

2

The collection of equivalence classes of T(Σ, ∅) under ≠
e

 also forms a data algebra over

Σ, called the initial algebra of (Σ, e), and written T(Σ, ∅)/≠
e

. The application of an

operation f to classes [t1], [t2], … , [tk]∈T(Σ, ∅)/≠
e

 yields the result class

f([t1], [t2], … , [tk]) = [f(t1 , t2 , … , tk)] .

Final (or terminal) algebra semantics
Two terms t1 , t2∈T(Σ) are distinguishable with respect to eeee , provided there i s
some other term t which involves a variable, say x, and whose sort is pre-defined (i .e.,
not the TOI) so that t[x→ t1] ±

e
 t [x→ t2], where t [x→ t '] denotes the result of

substituting term t ' in t in place of each occurrence of x. If two terms are not
distinguishable, they are said to be indistinguishable, and we write t1 ≈

e
 t2. Clearly

≈
e

 is an equivalence relation. For t∈ T(Σ), let «t»
e
 = {t '∈ T(Σ) | t ≈

e
 t '} denote the

indistinguishability class of t. Again we omit the subscript indicating the equations e
when this is understood from context.

The collection of indistinguishability classes of t(Σ , ∅) under ≈
e

 also forms a data

algebra over Σ, called the final algebra of (Σ , e), and written T(Σ , ∅)/≈
e

. The

application of an operation f to classes «t1», «t2», … , «tk»∈T(Σ, ∅)/≈
e

 yields the

result class

f(«t1», «t2», … , «tk») = «f(t1, t2, … , tk)».

Loose semantics
A data algebra A is a model of a specification (Σ, e) provided that

• for each sort s of Σ, there is a set As (the carrier of sort s),
• the operations of Σ correspond to the functions of A with respect to the sorts and

carrier sets, so that all the equations of e are satisfied in A, and
• the carriers have no junk.

The loose semantics of (Σ, e) is the collection of all its models.

