22C/55:181

The first component of the phone system specification is the basic type
declaration
[Person, Phone]

In the Miranda animation, we must select a representation for each of these
abstract types. They are defined in Miranda (since initial upeer-case letters are
reserved for another use) as the type synonyms

person == string

phone == string

The second component of the phone system specification is a state schema

PhoneDB

members: [P Person
telephones: Person <= Phone

dom telephones € members

The schema name is PhoneDB, and appears in the “top border”. The body of the
schema is divided into two parts. In the top part (above the line) there are two
variables declared — 'members' denotes a subset of the abstract type Person,
and 'telephones' is a binary relation relating values of type Person and Phone
(i.e., a subset of S x T). These declarations restrict the type of values that are to
be associated with a variable, but do not prescribe any specific value. The
collection of potential values retained in a specification is referred to as its state
space.

In the bottom part of the state schema (below the line), an invariant property of
the state is given. An invariant asserts a condition on declared variable values
that is always true. In this case, the telephones relation is only true for a Person
who belongs to the set members (but need not be true for all such Persons).



22C/55:181

In the Miranda animation, set and relation types are unavailable. However, lists
with no duplicates provide a natural representation for sets, and a Boolean-
valued function is effectively identical to a relation. Thus the state space in the
Miranda animation is given as the type synonym declaration

phonedb == ([person], [(person,phone)])

That is, states are constituted as 2-tuples where the first component is a list of
person (the members set), and the second component is a list of ordered pairs
(the telephones relation).

Then the invariant is implemented as the Boolean function using Miranda’s list
comprehension as

invar :: phonedb -> bool

invar (mem,tel) = and [member mem n | (n,a) <- tel]

That is, for mem :: [person] and tel :: [(person,phone)], each pair (n,a) is
extracted from the relation tel using list comprehension, and the test for n in the
set mem is performed to construct a list of bool values. Only if all these values
are True is the invariant computed to be True. We have yet to see how the
animation ensures that the invariant holds for every state taken on in a test run.
We will see a little later that the function 'phdb' is a command interpreter, invoked
to animate each operation, and it always verifies the invariant before proceeding.



22C/55:181

An operation schema has two states associated with it — a pre-state (before
the operation) and a post-state (after the operation). The pre-state is designated
by referring to the state variables. The post-state is designated by adding the
decoration ' to the state variables. An operation schema may also involve input
and output variables (arguments and return value, respectively). Last, but not
least, an operation schema will prescribe pre-conditions and post-conditions
for the operation.

AddEntry
APhoneDB

name?: Person
newnumber?: Phone

name?&Emembers
name? — newnumber? &telephones

telephones' = telephones U {name? — newnumber?}
members' = members

The APhoneDB declaration imports all the variable declarations from the
PhoneDB state schema, and foretells that the AddEntry operation will make a
change in this state. The invariants of the named state schema are also imported
and understood as being in conjunction to those in the conditions part of the
schema.

In addition to the imported state variables, this operation schema declares two
argument variables — the decoration '?' signifies such variables. The condition
portion of this schema express pre-conditions on the state and input variables
required for the correct application of the operation, written with the undecorated
variable names. There are also post-conditions written using the variables
decorated with .



