MATH:6010, Spring 2019 — Prof. Bleher

Homework Set 4

Please hand in the following problems at the **beginning of the lecture on Thursday**, March 7, 2019.

Problems:

- (1) Let $\alpha \in \mathbb{R}^+$ satisfy $\alpha^2 = (9 5\sqrt{3})(2 \sqrt{2})$. Let $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \alpha)$.
 - (a) Prove that K/\mathbb{Q} is Galois and determine $f(x) = \operatorname{Irr}(\alpha, \mathbb{Q}, x)$.
 - **Hint:** To prove normality, think about where each embedding $\tau : K \to \mathbb{Q}^a$ over \mathbb{Q} can possibly send α . This consideration should also help you determine $f(x) = \operatorname{Irr}(\alpha, \mathbb{Q}, x)$.
 - (b) Prove that $K = \mathbb{Q}(\alpha)$. Find a set of generators of $G = \operatorname{Gal}(K/\mathbb{Q})$ and write down each of these generators as a permutation of the roots of $f(x) = \operatorname{Irr}(\alpha, \mathbb{Q}, x)$. Determine the isomorphism type of G.
- (2) Let K be a cyclic extension of a field F of characteristic p > 0. Let $G = \text{Gal}(K/F) = \langle \sigma \rangle$ be of order p^{m-1} where $m \ge 2$. Let $\beta \in K$ with $\text{Tr}_{K/F}(\beta) = 1$.
 - (a) Show that there exists an element $\alpha \in K$ with $\sigma(\alpha) \alpha = \beta^p \beta$. **Hint:** Use a similar element α as in the proof of Hilbert's Theorem 90, additive form, for some appropriate θ .
 - (b) Show that $f(x) = x^p x \alpha$ is irreducible in K[x], where α is as in part (a). **Hint:** By Artin-Schreier it is enough to show that f(x) has no roots in K.
 - (c) Let δ be a root of f(x). Show that $K(\delta)/F$ is cyclic Galois of degree p^m , and $\operatorname{Gal}(K(\delta)/F)$ is generated by an extension σ^* of σ such that $\sigma^*(\delta) = \delta + \beta + j$ for some j in the prime subfield \mathbb{F}_p of F.

Hint: One possibility to prove this is by using Artin's Theorem (Theorem 1.8 of Chapter VI.1 in Lang).

Do also the following problem, but do not hand it in:

- (3) In each of the following cases (a) and (b), you are given a polynomial $f(x) \in F[x]$ as follows:
 - (a) $f(x) = x^4 4x^2 1, F = \mathbb{Q}.$
 - (b) $f(x) = (x^3 2)(x^3 3)(x^2 2), F = \mathbb{Q}(\sqrt{-3}).$
 - Let K be the splitting field of f(x) over F and let $G = \operatorname{Gal}(K/F)$.

For both cases (a) and (b): Determine K and find [K : F]. Find a set of generators of G and write down each of these generators as a permutation of the roots of f(x). Determine the isomorphism type of G.

Frauke Bleher Feb 21 2019