MATH:6010, Spring 2019 - Prof. Bleher
Homework Set 3

Please hand in the following problems at the beginning of the lecture on Thursday, February 21, 2019.

## Problems:

(1) Let $p$ be a prime, and let $K=\mathbb{F}_{p}(u, t)$, where $u$ and $t$ are algebraically independent over $\mathbb{F}_{p}$. This means that there is no non-zero polynomial $f\left(X_{1}, X_{2}\right) \in$ $\mathbb{F}_{p}\left[X_{1}, X_{2}\right]$ with $f(u, t)=0$. In other words, $\mathbb{F}_{p}[u, t]$ is isomorphic to the polynomial ring $\mathbb{F}_{p}\left[X_{1}, X_{2}\right]$.

Define $E=\mathbb{F}_{p}\left(u^{p}-u, t^{p}-u\right)$, and let $K_{E}$ be the maximal separable subextension of $K / E$, i.e. $K_{E}=\{\alpha \in K \mid \alpha$ separable over $E\}$.
(a) Determine the following degrees and separable degrees:

- $\left[K: \mathbb{F}_{p}\left(u, t^{p}\right)\right]$ and $\left[K: \mathbb{F}_{p}\left(u, t^{p}\right)\right]_{s}$
- $\left[\mathbb{F}_{p}\left(u, t^{p}\right): E\right]$ and $\left[\mathbb{F}_{p}\left(u, t^{p}\right): E\right]_{s}$
- $[K: E]$ and $[K: E]_{s}$

Describe $K_{E}$ as a finitely generated field extension of $\mathbb{F}_{p}$, i.e find finitely many $\beta_{1}, \ldots, \beta_{n} \in K_{E}$ such that $K_{E}=\mathbb{F}_{p}\left(\beta_{1}, \ldots, \beta_{n}\right)$.
Hint: To show that certain polynomials are irreducible over the respective fields, use the algebraic independence of $u$ and $t$ over $\mathbb{F}_{p}$.
(b) Find an element $\alpha \in K$ such that $[E(\alpha): E]=p$ and $[E(\alpha): E]_{s}=1$. In other words, $E(\alpha)$ is a simple extension of $E$ that is not separable over $E$.
Hint: Let $v=u^{p}-u$, and $w=t^{p}-u$, and consider $v-w$. This is not the $\alpha$ but related to it.
(2) This exercise completes what we have started in \#1 of Homework 2.

Let $E / F$ be a field extension and assume that every non-constant polynomial in $F[x]$ has a root in $E$. Prove that every non-constant polynomial in $F[x]$ splits into linear factors in $E[x]$.
Hint: If $F$ is a perfect field, use \#1 of Homework 2. If $F$ is not perfect, let $F_{0}=\{\alpha \in E \mid \alpha$ is purely inseparable over $F\}$. Show that $F_{0}$ is a subfield of $E$ containing $F$ and that $F_{0}$ is perfect. Use $F_{0}$ to complete the proof.

Conclude: If $E / F$ is an algebraic field extension, then $E$ is algebraically closed if and only if every non-constant polynomial in $F[x]$ has a root in $E$.

Frauke Bleher
Feb 72019

