MATH:6010, Spring 2019 - Prof. Bleher
Homework Set 2

Please hand in the following problems at the beginning of the lecture on Thursday, February 7, 2019.

Problems:

(1) Let F be a field such that F has the following property:
(*) Every finite extension of F is simple.
(We will prove later that if F is perfect (e.g. if $\operatorname{char}(F)=0$ or if F is a finite field) then F has property (*).)
(a) Let E / F be a field extension and assume that every non-constant polynomial in $F[x]$ has a root in E. Prove that every non-constant polynomial in $F[x]$ splits into linear factors in $E[x]$.
Hint: Let $f(x) \in F[x]$ be non-constant, let F^{a} be an algebraic closure of F, let $\alpha_{1}, \ldots, \alpha_{k}$ be the distinct roots of $f(x)$ in F^{a} and let $K=F\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ (i.e. K is a splitting field of $f(x)$ over F). By (*), K is a simple extension of F. Let $\gamma \in K$ be a primitive element and consider $g(x)=\operatorname{Irr}(\gamma, F, x)$. Now use that $g(x)$ has a root in E.
(b) Conclude: If F is a field satisfying $(*)$ and E / F is an algebraic extension, then E is algebraically closed if and only if every non-constant polynomial in $F[x]$ has a root in E. When we drop the assumption that E / F is algebraic, show that this may not be true (give an example).
(2) Let F be a field of characteristic 0 , let F^{a} be a fixed algebraic closure of F, and let $f(x) \in F[x]$ be a monic irreducible quadratic polynomial. For $n \in \mathbb{Z}^{+}$, define
$f_{1}(x)=f(x) \quad$ and $\quad f_{n}(x)=f\left(f_{n-1}(x)\right)=f_{n-1}(f(x)) \quad$ for $n \geq 2$.
(a) Let $n \in \mathbb{Z}^{+}$. Determine the degree of $f_{n}(x)$. Let $K_{n} \subseteq F^{a}$ be a splitting field of $f_{n}(x)$ over F. Show that $K_{n} \subseteq K_{n+1}$.
(b) Prove that every embedding $\sigma: K_{n+1} \rightarrow F^{a}$ over K_{n} induces an automorphism of K_{n+1} of order 1 or 2 .
(3) Let F be a field, let $f(x)$ be in $F[x]$ of degree $n \geq 1$, and let K be a splitting field of $f(x)$ over F. Show that $[K: F]$ divides n !
Hint: Use induction, and distinguish the cases of $f(x)$ being irreducible and reducible in $F[x]$.

Do also the following problems, but do not hand them in:
(4) Suppose F is a field of positive characteristic p. Let $a \in F$ and suppose a has no $p^{\text {th }}$ root in F. Prove that for all $n \in \mathbb{Z}^{+}, t^{p^{n}}-a$ is an irreducible polynomial in $F[t]$. Please prove this using elementary arguments (use characteristic p and consider the constant coefficients of monic divisors of $t^{p^{n}}-a$).
(5) Here are a couple of problems to get you back into computations with fields. You should justify all your answers.
(a) Find a splitting field K of $x^{4}+4$ over \mathbb{Q} and determine $[K: \mathbb{Q}]$.
(b) Find a splitting field K of $x^{12}-9$ over \mathbb{Q} and determine $[K: \mathbb{Q}]$.
(c) Find a splitting field K of $\left(x^{4}+x^{2}+1\right)\left(x^{2}+3\right)$ over \mathbb{Q} and determine $[K: \mathbb{Q}]$.
(d) Let $\gamma=\sqrt[4]{11} \in \mathbb{R}^{+}$. Determine $[\mathbb{Q}(\gamma+i \gamma): \mathbb{Q}]$. Is $\mathbb{Q}(\gamma+i \gamma) / \mathbb{Q}$ normal?

Frauke Bleher
Jan 242019

