MATH:6010, Spring 2019 - Prof. Bleher
Homework Set 1

Please hand in the following problems at the beginning of the lecture on Thursday, January 24, 2019.

Problems:

(1) A field F is said to be formally real if -1 is not expressible as a sum of squares in F. Let F be a formally real field, let $f(x) \in F[x]$ be an irreducible polynomial of odd degree and let α be a root of $f(x)$. Prove that $F(\alpha)$ is formally real.
Hint: Let α be a counterexample of minimal degree. Show that $-1+f(x) g(x)=$ $\left(p_{1}(x)\right)^{2}+\cdots+\left(p_{m}(x)\right)^{2}$ for some $p_{i}(x), g(x) \in F[x]$ where $g(x)$ has odd degree $<$ deg f. Show that some root β of g has odd degree over F and $F(\beta)$ is not formally real, contradicting the minimality of α.
(2) Let F be a field and let $E=F(x)$ where x is transcendental over F, i.e. x is not algebraic over F. In other words, E is the field of rational functions in x with coefficients in F.
(a) Let $K \subseteq E$ be a subfield of E such that K properly contains F. Prove that x is algebraic over K.
(b) Let $y=f(x) / g(x)$ be in $E=F(x)$, where $f(x)$ and $g(x)$ are relatively prime polynomials in $F[x]$. Let $n=\max (\operatorname{deg} f, \operatorname{deg} g)$, and suppose $n \geq 1$. Prove $[F(x): F(y)]=n$.
Hint: Gauss' Lemma may be useful.

Do also this problem, but do not hand it in:
(3) Let F be a field of characteristic $\neq 2$. Let D_{1}, D_{2} be elements of F, neither of which is a square in F.
(a) Prove that the field $F\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)$ is of degree 4 over F if $D_{1} \cdot D_{2}$ is not a square in F and that it is of degree 2 over F otherwise. When the field $F\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)$ is of degree 4 over F, it is called a biquadratic extension of F.
(b) Assume that $D_{1} \cdot D_{2}$ is not a square in F.

Prove that $F\left(\sqrt{D_{1}}+\sqrt{D_{2}}\right)=F\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)$ and find the monic irreducible polynomial over F satisfied by $\sqrt{D_{1}}+\sqrt{D_{2}}$.
Hint: Look at powers of $\sqrt{D_{1}}+\sqrt{D_{2}}$.

Frauke Bleher
Jan 132019

