MATH:6010, Spring 2019 — Prof. Bleher

Homework Set 1

Please hand in the following problems at the **beginning of the lecture on Thursday**, January 24, 2019.

Problems:

- (1) A field F is said to be formally real if -1 is not expressible as a sum of squares in F. Let F be a formally real field, let f(x) ∈ F[x] be an irreducible polynomial of odd degree and let α be a root of f(x). Prove that F(α) is formally real.
 Hint: Let α be a counterexample of minimal degree. Show that -1 + f(x)g(x) = (p₁(x))² + ··· + (p_m(x))² for some p_i(x), g(x) ∈ F[x] where g(x) has odd degree < deg f. Show that some root β of g has odd degree over F and F(β) is not formally real, contradicting the minimality of α.
- (2) Let F be a field and let E = F(x) where x is transcendental over F, i.e. x is not algebraic over F. In other words, E is the field of rational functions in x with coefficients in F.
 - (a) Let $K \subseteq E$ be a subfield of E such that K properly contains F. Prove that x is algebraic over K.
 - (b) Let y = f(x)/g(x) be in E = F(x), where f(x) and g(x) are relatively prime polynomials in F[x]. Let $n = \max(\deg f, \deg g)$, and suppose $n \ge 1$. Prove [F(x):F(y)] = n.

Hint: Gauss' Lemma may be useful.

Do also this problem, but do not hand it in:

- (3) Let F be a field of characteristic $\neq 2$. Let D_1, D_2 be elements of F, neither of which is a square in F.
 - (a) Prove that the field $F(\sqrt{D_1}, \sqrt{D_2})$ is of degree 4 over F if $D_1 \cdot D_2$ is not a square in F and that it is of degree 2 over F otherwise. When the field $F(\sqrt{D_1}, \sqrt{D_2})$ is of degree 4 over F, it is called a biquadratic extension of F.
 - (b) Assume that D₁ · D₂ is not a square in F. Prove that F(√D₁ + √D₂) = F(√D₁, √D₂) and find the monic irreducible polynomial over F satisfied by √D₁ + √D₂. Hint: Look at powers of √D₁ + √D₂.

Frauke Bleher Jan 13 2019