MATH:5010, Spring 2017 — Prof. Bleher

Some extra problems (not to be handed in)

(1) Let F be a perfect field. Let E/F be an **algebraic** extension and assume that every non-constant polynomial in F[x] has a root in E. Prove that E is algebraically closed.

Hint: Let \overline{E} be an algebraic closure of E. If E is not algebraically closed, then there exists an element $\alpha \in \overline{E} - E$. Show that α is algebraic over F. Let f(x)be the minimal polynomial of α over F, i.e. $f(x) = m_{\alpha,F}(x)$. Let $K \subseteq \overline{E}$ be a splitting field of f(x) over F. Since F is perfect, $K = F(\gamma)$ for some $\gamma \in K$. Let $g(x) = m_{\gamma,F}(x)$. Now use the assumption that g(x) has a root in E.

(2) Let F be a field of characteristic 0, let \overline{F} be a fixed algebraic closure of F, and let $f(x) \in F[x]$ be a monic irreducible quadratic polynomial. For $n \in \mathbb{Z}^+$, define

 $f_1(x) = f(x)$ and $f_{n+1}(x) = f_n(f(x))$ for $n \ge 1$.

Let $n \in \mathbb{Z}^+$. Let $K_n \subseteq \overline{F}$ be a splitting field of $f_n(x)$ over F. Show that $K_n \subseteq K_{n+1}$. **Hint:** Prove that for each root α of $f_n(x)$ there exists a root β of $f_{n+1}(x)$ such that $\alpha = f(\beta)$. For this it may be useful to write $f_{n+1}(x) = f_n(f(x))$ as a product of quadratic polynomials with coefficients in K_n .

(3) Suppose F is a field of characteristic p > 0. Let E/F be a finite extension and suppose [E:F] is relatively prime to p. Show that E is separable over F.

Frauke Bleher April 21 2017