Tree normal forms for quiver representations

Thorsten Weist

Conference on Geometric Methods in Representation Theory University of Iowa

▶ Fix $k = \mathbb{C}$. Let $Q = (Q_0, Q_1)$ be a quiver and $\alpha \in \mathbb{N}^{Q_0}$ be a dimension vector.

- ▶ Fix $k = \mathbb{C}$. Let $Q = (Q_0, Q_1)$ be a quiver and $\alpha \in \mathbb{N}^{Q_0}$ be a dimension vector.
- Problem: Classify all indecomposable representations M of Q with dim M = α up to isomorphism.

- ▶ Fix $k = \mathbb{C}$. Let $Q = (Q_0, Q_1)$ be a quiver and $\alpha \in \mathbb{N}^{Q_0}$ be a dimension vector.
- Problem: Classify all indecomposable representations M of Q with dim M = α up to isomorphism.

Let

$$a_{lpha}(q) = \sum_{i=0}^{n} c_{i}q^{i} \in \mathbb{N}[q]$$

be the Kac polynomial, i.e. $a_{\alpha}(q)$ is the number of absolutely indecomposable representations over \mathbb{F}_q of dimension α up to isomorphism.

- ▶ Fix $k = \mathbb{C}$. Let $Q = (Q_0, Q_1)$ be a quiver and $\alpha \in \mathbb{N}^{Q_0}$ be a dimension vector.
- Problem: Classify all indecomposable representations M of Q with dim M = α up to isomorphism.

Let

$$a_{\alpha}(q) = \sum_{i=0}^{n} c_{i}q^{i} \in \mathbb{N}[q]$$

be the Kac polynomial, i.e. $a_{\alpha}(q)$ is the number of absolutely indecomposable representations over \mathbb{F}_q of dimension α up to isomorphism.

Conjecture [Kac]

Let $\mathrm{Ind}(Q,\alpha)$ be the set of indecomposable representations of dimension α up to isomorphism. We have

$$\mathrm{Ind}(Q,\alpha)\cong\coprod_{j\in J}\mathbb{A}^{l_j}$$

where $c_i = |\{j \in J \mid l_j = i\}|.$

• Let $T = ((T_i)_{i \in Q_0}, (T_\rho : T_i \to T_j)_{\rho: i \to j \in Q_1}) \in \operatorname{Rep}(Q, \alpha).$

- ▶ Let $T = ((T_i)_{i \in Q_0}, (T_\rho : T_i \to T_j)_{\rho:i \to j \in Q_1}) \in \operatorname{Rep}(Q, \alpha).$
- T is a tree module if it is indecomposable and if there exists a basis B_i for every T_i such that the number of non-zero entries of ((T_ρ)_{B_i,B_j})_{ρ:i→j∈Q1} is (∑_{i∈Q0} dim T_i) − 1.

• Let
$$T = ((T_i)_{i \in Q_0}, (T_\rho : T_i \to T_j)_{\rho:i \to j \in Q_1}) \in \operatorname{Rep}(Q, \alpha).$$

- T is a tree module if it is indecomposable and if there exists a basis B_i for every T_i such that the number of non-zero entries of ((T_ρ)_{B_i,B_j})_{ρ:i→j∈Q₁} is (∑_{i∈Q₀} dim T_i) − 1.
- \triangleright For any pair of representations M, N, there exists a natural map

$$d_{M,N}: H_{M,N}:=\bigoplus_{\rho:i\to j\in \mathcal{Q}_1}\operatorname{Hom}(M_i,N_j)\twoheadrightarrow\operatorname{Ext}(M,N),$$

$$(g_{\rho})_{\rho \in \mathcal{Q}_{1}} \mapsto \left(0 \to (N_{\rho})_{\rho \in \mathcal{Q}_{1}} \to \begin{pmatrix} N_{\rho} & g_{\rho} \\ 0 & M_{\rho} \end{pmatrix}_{\rho \in \mathcal{Q}_{1}} \to (M_{\rho})_{\rho \in \mathcal{Q}_{1}} \to 0 \right)$$

• Let
$$T = ((T_i)_{i \in Q_0}, (T_\rho : T_i \to T_j)_{\rho:i \to j \in Q_1}) \in \operatorname{Rep}(Q, \alpha).$$

- T is a tree module if it is indecomposable and if there exists a basis B_i for every T_i such that the number of non-zero entries of ((T_ρ)_{B_i,B_j})_{ρ:i→j∈Q₁} is (∑_{i∈Q₀} dim T_i) − 1.
- For any pair of representations M, N, there exists a natural map

$$d_{M,N}: H_{M,N}:=\bigoplus_{\rho:i\to j\in \mathcal{Q}_1}\operatorname{Hom}(M_i,N_j)\twoheadrightarrow\operatorname{Ext}(M,N),$$

$$(g_{\rho})_{\rho \in \mathcal{Q}_{1}} \mapsto \left(0 \to (N_{\rho})_{\rho \in \mathcal{Q}_{1}} \to \begin{pmatrix} N_{\rho} & g_{\rho} \\ 0 & M_{\rho} \end{pmatrix}_{\rho \in \mathcal{Q}_{1}} \to (M_{\rho})_{\rho \in \mathcal{Q}_{1}} \to 0 \right)$$

► We can thus choose f₁,..., f_n ∈ H_{M,N} such that (d_{M,N}(f_i))_i is a basis of Ext(M, N).

Fix a tree module T and $f_1, \ldots, f_n \in H_T$ such that $(d_T(f_i))_i$ is a basis of Ext(T, T).

- Fix a tree module T and $f_1, \ldots, f_n \in H_T$ such that $(d_T(f_i))_i$ is a basis of Ext(T, T).
- With $\mu \in k^n$ we can associate $T(\mu) \in \operatorname{Rep}(Q, \alpha)$ where

$$T(\mu)_{\rho} = T_{\rho} + \sum_{i=1}^{n} \mu_i(f_i)_{\rho}$$

for every $\rho \in Q_1$.

- Fix a tree module T and $f_1, \ldots, f_n \in H_T$ such that $(d_T(f_i))_i$ is a basis of Ext(T, T).
- With $\mu \in k^n$ we can associate $T(\mu) \in \operatorname{Rep}(Q, \alpha)$ where

$$T(\mu)_{\rho} = T_{\rho} + \sum_{i=1}^{n} \mu_i(f_i)_{\rho}$$

for every $\rho \in Q_1$.

▶ A subspace $U \subset \langle f_1, \ldots, f_n \rangle$ is called strong and separating if $T(\mu)$ is indecomposable for every $\mu \in U$ and if $T(\lambda) \ncong T(\mu)$ for $\mu, \lambda \in U$ with $\lambda \neq \mu$.

- Fix a tree module T and $f_1, \ldots, f_n \in H_T$ such that $(d_T(f_i))_i$ is a basis of Ext(T, T).
- ▶ With $\mu \in k^n$ we can associate $T(\mu) \in \operatorname{Rep}(Q, \alpha)$ where

$$T(\mu)_{\rho} = T_{\rho} + \sum_{i=1}^{n} \mu_i(f_i)_{\rho}$$

for every $\rho \in Q_1$.

- ▶ A subspace $U \subset \langle f_1, \ldots, f_n \rangle$ is called strong and separating if $T(\mu)$ is indecomposable for every $\mu \in U$ and if $T(\lambda) \ncong T(\mu)$ for $\mu, \lambda \in U$ with $\lambda \neq \mu$.
- A dimension vector $\alpha \in \mathbb{N}^{Q_0}$ admits a (unique) tree normal form if there exist tree modules $T_1, \ldots, T_r \in \operatorname{Rep}(Q, \alpha)$ and strong and separating subspaces $U_{T_i} \subset \operatorname{Ext}(T_i, T_i)$ such that for every indecomposable representation $M \in \operatorname{Rep}(Q, \alpha)$ there exists a (unique) $i \in \{1, \ldots, r\}$ such that $M \cong T_i(\mu_i)$ for some $\mu_i \in U_{T_i}$.

C*-action on moduli spaces of stable representation Mst_α(Q) whose fixed point live on the universal covering Q̃.

- C^{*}-action on moduli spaces of stable representation Mst_α(Q) whose fixed point live on the universal covering Q̃.
- Stable tree modules are fixed points and the attracting cell of a fixed point gives an affine space of non-isomorphic stable representations around it.

- C^{*}-action on moduli spaces of stable representation Mst_α(Q) whose fixed point live on the universal covering Q̃.
- Stable tree modules are fixed points and the attracting cell of a fixed point gives an affine space of non-isomorphic stable representations around it.
- Recursive methods generalizing Schofield induction and Ringel's reflection functor, e.g.

- C^{*}-action on moduli spaces of stable representation Mst_α(Q) whose fixed point live on the universal covering Q̃.
- Stable tree modules are fixed points and the attracting cell of a fixed point gives an affine space of non-isomorphic stable representations around it.
- Recursive methods generalizing Schofield induction and Ringel's reflection functor, e.g.

Theorem

Let S, \hat{T} be tree modules with strong and separating subspaces $U_S, U_{\hat{T}}$ such that $\operatorname{End}(S(\mu)) = k$, $\operatorname{Hom}(\hat{T}(\lambda), S(\mu)) =$ $\operatorname{Hom}(S(\mu), \hat{T}(\lambda)) = 0$ for all $\mu \in U_S, \lambda \in U_{\hat{T}}$. Let $e \in \operatorname{Ext}(S, \hat{T})$ be universal for U_S and $U_{\hat{T}}$. Then $U_S + U_{\hat{T}} \subseteq \operatorname{Ext}(T, T)$ is strong and separating where T is the middle term of $e : 0 \to \hat{T} \to T \to S \to 0$.

Thank you!