Tree normal forms for quiver representations

Thorsten Weist

Conference on Geometric Methods in Representation Theory University of Iowa

Kac's conjecture

Kac's conjecture

- Fix $k=\mathbb{C}$. Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver and $\alpha \in \mathbb{N}^{Q_{0}}$ be a dimension vector.

Kac's conjecture

- Fix $k=\mathbb{C}$. Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver and $\alpha \in \mathbb{N}^{Q_{0}}$ be a dimension vector.
- Problem: Classify all indecomposable representations M of Q with $\underline{\operatorname{dim}} M=\alpha$ up to isomorphism.

Kac's conjecture

- Fix $k=\mathbb{C}$. Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver and $\alpha \in \mathbb{N}^{Q_{0}}$ be a dimension vector.
- Problem: Classify all indecomposable representations M of Q with $\operatorname{dim} M=\alpha$ up to isomorphism.
- Let

$$
a_{\alpha}(q)=\sum_{i=0}^{n} c_{i} q^{i} \in \mathbb{N}[q]
$$

be the Kac polynomial, i.e. $a_{\alpha}(q)$ is the number of absolutely indecomposable representations over \mathbb{F}_{q} of dimension α up to isomorphism.

Kac's conjecture

- Fix $k=\mathbb{C}$. Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver and $\alpha \in \mathbb{N}^{Q_{0}}$ be a dimension vector.
- Problem: Classify all indecomposable representations M of Q with $\operatorname{dim} M=\alpha$ up to isomorphism.
- Let

$$
a_{\alpha}(q)=\sum_{i=0}^{n} c_{i} q^{i} \in \mathbb{N}[q]
$$

be the Kac polynomial, i.e. $a_{\alpha}(q)$ is the number of absolutely indecomposable representations over \mathbb{F}_{q} of dimension α up to isomorphism.

Conjecture [Kac]

Let $\operatorname{Ind}(Q, \alpha)$ be the set of indecomposable representations of dimension α up to isomorphism. We have

$$
\operatorname{Ind}(Q, \alpha) \cong \coprod_{j \in J} \mathbb{A}^{l_{j}}
$$

where $c_{i}=\left|\left\{j \in J \mid l_{j}=i\right\}\right|$.

Tree modules

Tree modules

- Let $T=\left(\left(T_{i}\right)_{i \in Q_{0}},\left(T_{\rho}: T_{i} \rightarrow T_{j}\right)_{\rho: i \rightarrow j \in Q_{1}}\right) \in \operatorname{Rep}(Q, \alpha)$.

Tree modules

- Let $T=\left(\left(T_{i}\right)_{i \in Q_{0}},\left(T_{\rho}: T_{i} \rightarrow T_{j}\right)_{\rho: i \rightarrow j \in Q_{1}}\right) \in \operatorname{Rep}(Q, \alpha)$.
- T is a tree module if it is indecomposable and if there exists a basis \mathcal{B}_{i} for every T_{i} such that the number of non-zero entries of $\left(\left(T_{\rho}\right)_{\mathcal{B}_{i}, \mathcal{B}_{j}}\right)_{\rho: i \rightarrow j \in Q_{1}}$ is $\left(\sum_{i \in Q_{0}} \operatorname{dim} T_{i}\right)-1$.

Tree modules

- Let $T=\left(\left(T_{i}\right)_{i \in Q_{0}},\left(T_{\rho}: T_{i} \rightarrow T_{j}\right)_{\rho: i \rightarrow j \in Q_{1}}\right) \in \operatorname{Rep}(Q, \alpha)$.
- T is a tree module if it is indecomposable and if there exists a basis \mathcal{B}_{i} for every T_{i} such that the number of non-zero entries of $\left(\left(T_{\rho}\right)_{\mathcal{B}_{i}, \mathcal{B}_{j}}\right)_{\rho: i \rightarrow j \in Q_{1}}$ is $\left(\sum_{i \in Q_{0}} \operatorname{dim} T_{i}\right)-1$.
- For any pair of representations M, N, there exists a natural map

$$
\begin{gathered}
d_{M, N}: H_{M, N}:=\bigoplus_{\rho: i \rightarrow j \in Q_{1}} \operatorname{Hom}\left(M_{i}, N_{j}\right) \rightarrow \operatorname{Ext}(M, N), \\
\left(g_{\rho}\right)_{\rho \in Q_{1}} \mapsto\left(0 \rightarrow\left(N_{\rho}\right)_{\rho \in Q_{1}} \rightarrow\left(\begin{array}{cc}
N_{\rho} & g_{\rho} \\
0 & M_{\rho}
\end{array}\right)_{\rho \in Q_{1}} \rightarrow\left(M_{\rho}\right)_{\rho \in Q_{1}} \rightarrow 0\right)
\end{gathered}
$$

Tree modules

- Let $T=\left(\left(T_{i}\right)_{i \in Q_{0}},\left(T_{\rho}: T_{i} \rightarrow T_{j}\right)_{\rho: i \rightarrow j \in Q_{1}}\right) \in \operatorname{Rep}(Q, \alpha)$.
- T is a tree module if it is indecomposable and if there exists a basis \mathcal{B}_{i} for every T_{i} such that the number of non-zero entries of $\left(\left(T_{\rho}\right)_{\mathcal{B}_{i}, \mathcal{B}_{j}}\right)_{\rho: i \rightarrow j \in Q_{1}}$ is $\left(\sum_{i \in Q_{0}} \operatorname{dim} T_{i}\right)-1$.
- For any pair of representations M, N, there exists a natural map

$$
\begin{gathered}
d_{M, N}: H_{M, N}:=\bigoplus_{\rho: i \rightarrow j \in Q_{1}} \operatorname{Hom}\left(M_{i}, N_{j}\right) \rightarrow \operatorname{Ext}(M, N), \\
\left(g_{\rho}\right)_{\rho \in Q_{1}} \mapsto\left(0 \rightarrow\left(N_{\rho}\right)_{\rho \in Q_{1}} \rightarrow\left(\begin{array}{cc}
N_{\rho} & g_{\rho} \\
0 & M_{\rho}
\end{array}\right)_{\rho \in Q_{1}} \rightarrow\left(M_{\rho}\right)_{\rho \in Q_{1}} \rightarrow 0\right)
\end{gathered}
$$

- We can thus choose $f_{1}, \ldots, f_{n} \in H_{M, N}$ such that $\left(d_{M, N}\left(f_{i}\right)\right)_{i}$ is a basis of $\operatorname{Ext}(M, N)$.

Tree normal forms

Tree normal forms

- Fix a tree module T and $f_{1}, \ldots, f_{n} \in H_{T}$ such that $\left(d_{T}\left(f_{i}\right)\right)_{i}$ is a basis of $\operatorname{Ext}(T, T)$.

Tree normal forms

- Fix a tree module T and $f_{1}, \ldots, f_{n} \in H_{T}$ such that $\left(d_{T}\left(f_{i}\right)\right)_{i}$ is a basis of $\operatorname{Ext}(T, T)$.
- With $\mu \in k^{n}$ we can associate $T(\mu) \in \operatorname{Rep}(Q, \alpha)$ where

$$
T(\mu)_{\rho}=T_{\rho}+\sum_{i=1}^{n} \mu_{i}\left(f_{i}\right)_{\rho}
$$

for every $\rho \in Q_{1}$.

Tree normal forms

- Fix a tree module T and $f_{1}, \ldots, f_{n} \in H_{T}$ such that $\left(d_{T}\left(f_{i}\right)\right)_{i}$ is a basis of $\operatorname{Ext}(T, T)$.
- With $\mu \in k^{n}$ we can associate $T(\mu) \in \operatorname{Rep}(Q, \alpha)$ where

$$
T(\mu)_{\rho}=T_{\rho}+\sum_{i=1}^{n} \mu_{i}\left(f_{i}\right)_{\rho}
$$

for every $\rho \in Q_{1}$.

- A subspace $U \subset\left\langle f_{1}, \ldots, f_{n}\right\rangle$ is called strong and separating if $T(\mu)$ is indecomposable for every $\mu \in U$ and if $T(\lambda) \not \equiv T(\mu)$ for $\mu, \lambda \in U$ with $\lambda \neq \mu$.

Tree normal forms

- Fix a tree module T and $f_{1}, \ldots, f_{n} \in H_{T}$ such that $\left(d_{T}\left(f_{i}\right)\right)_{i}$ is a basis of $\operatorname{Ext}(T, T)$.
- With $\mu \in k^{n}$ we can associate $T(\mu) \in \operatorname{Rep}(Q, \alpha)$ where

$$
T(\mu)_{\rho}=T_{\rho}+\sum_{i=1}^{n} \mu_{i}\left(f_{i}\right)_{\rho}
$$

for every $\rho \in Q_{1}$.

- A subspace $U \subset\left\langle f_{1}, \ldots, f_{n}\right\rangle$ is called strong and separating if $T(\mu)$ is indecomposable for every $\mu \in U$ and if $T(\lambda) \not \equiv T(\mu)$ for $\mu, \lambda \in U$ with $\lambda \neq \mu$.
- A dimension vector $\alpha \in \mathbb{N}^{Q_{0}}$ admits a (unique) tree normal form if there exist tree modules $T_{1}, \ldots, T_{r} \in \operatorname{Rep}(Q, \alpha)$ and strong and separating subspaces $U_{T_{i}} \subset \operatorname{Ext}\left(T_{i}, T_{i}\right)$ such that for every indecomposable representation $M \in \operatorname{Rep}(Q, \alpha)$ there exists a (unique) $i \in\{1, \ldots, r\}$ such that $M \cong T_{i}\left(\mu_{i}\right)$ for some $\mu_{i} \in U_{T_{i}}$.

How to get tree normal forms

How to get tree normal forms

- \mathbb{C}^{*}-action on moduli spaces of stable representation $M_{\alpha}^{\text {st }}(Q)$ whose fixed point live on the universal covering \tilde{Q}.

How to get tree normal forms

- \mathbb{C}^{*}-action on moduli spaces of stable representation $M_{\alpha}^{\text {st }}(Q)$ whose fixed point live on the universal covering \tilde{Q}.
- Stable tree modules are fixed points and the attracting cell of a fixed point gives an affine space of non-isomorphic stable representations around it.

How to get tree normal forms

- \mathbb{C}^{*}-action on moduli spaces of stable representation $M_{\alpha}^{\text {st }}(Q)$ whose fixed point live on the universal covering \tilde{Q}.
- Stable tree modules are fixed points and the attracting cell of a fixed point gives an affine space of non-isomorphic stable representations around it.
- Recursive methods generalizing Schofield induction and Ringel's reflection functor, e.g.

How to get tree normal forms

- \mathbb{C}^{*}-action on moduli spaces of stable representation $M_{\alpha}^{\text {st }}(Q)$ whose fixed point live on the universal covering \tilde{Q}.
- Stable tree modules are fixed points and the attracting cell of a fixed point gives an affine space of non-isomorphic stable representations around it.
- Recursive methods generalizing Schofield induction and Ringel's reflection functor, e.g.

Theorem

Let S, \hat{T} be tree modules with strong and separating subspaces
$U_{S}, U_{\hat{T}}$ such that $\operatorname{End}(S(\mu))=k, \operatorname{Hom}(\hat{T}(\lambda), S(\mu))=$
$\operatorname{Hom}(S(\mu), \hat{T}(\lambda))=0$ for all $\mu \in U_{S}, \lambda \in U_{\hat{T}}$. Let $e \in \operatorname{Ext}(S, \hat{T})$ be universal for U_{S} and $U_{\hat{T}}$. Then $U_{S}+U_{\hat{T}} \subseteq \operatorname{Ext}(T, T)$ is strong and separating where T is the middle term of $e: 0 \rightarrow \hat{T} \rightarrow T \rightarrow S \rightarrow 0$.

Thank you!

