Partition Identities and Quiver Representations

Anna Weigandt

University of Illinois at Urbana-Champaign

weigndt2@illinois.edu

November 20th, 2017

Based on joint work with Richárd Rimányi and Alexander Yong

arXiv:1608.02030

This project provides an elementary explanation for a **quantum dilogarithm identity** due to M. Reineke.

We use **generating function** techniques to establish a related identity, which is a generalization of the **Euler-Gauss** identity.

This reduces to an equivalent form of Reineke's identity in type A.

Representations of Quivers

Quivers

- A quiver $Q = (Q_0, Q_1)$ is a directed graph with
 - vertices: $i \in Q_0$
 - edges: $a: i \rightarrow j \in Q_1$

The Definition

A **representation** of Q is an assignment of a:

- vector space V_i to each vertex $i \in Q_0$ and
- linear transformation $f_a: V_i \to V_j$ to each arrow $i \xrightarrow{a} j \in Q_1$

$\dim(V) = (\dim V_i)_{i \in Q_0}$ is the dimension vector of V.

Fix $\textbf{d} \in \mathbb{N}^{\textit{Q}_0}.$ The representation space is

$$\operatorname{\mathsf{Rep}}_Q(\operatorname{\mathbf{d}}) := \bigoplus_{i \xrightarrow{a} j \in Q_1} \operatorname{\mathsf{Mat}}(\operatorname{\mathbf{d}}(i), \operatorname{\mathbf{d}}(j)).$$

Let

$$\mathsf{GL}_Q(\mathbf{d}) := \prod_{i \in Q_0} \mathsf{GL}(\mathbf{d}(i)).$$

 $GL_Q(\mathbf{d})$ acts on $\operatorname{Rep}_Q(\mathbf{d})$ by base change at each vertex.

Orbits of this action are in bijection with isomorphism classes of ${\bf d}$ dimensional representations.

A quiver is **Dynkin** if its underlying graph is of type ADE:

Theorem ([Gab75])

Dynkin *quivers have finitely many isomorphism classes of indecomposable representations.*

For type A, indecomposables $V_{[i,j]}$ are indexed by **intervals**.

- A lacing diagram ([ADF85]) \mathcal{L} is a graph so that:
 - the vertices are arranged in *n* columns labeled 1, 2, ..., *n*
 - the edges between adjacent columns form a partial matching.

A lacing diagram ([ADF85]) \mathcal{L} is a graph so that:

- the vertices are arranged in *n* columns labeled 1, 2, ..., *n*
- the edges between adjacent columns form a partial matching.

Idea: Lacing diagrams are a way to visually encode representations of an A_n quiver.

The Role of Lacing Diagrams in Representation Theory

When Q is a type A quiver, a lacing diagram can be interpreted as a sequence of **partial permutation matrices** which form a representation $V_{\mathcal{L}}$ of Q.

See [KMS06] for the **equiorientated case** and [BR04] for **arbitrary orientations**.

Equivalence Classes of Lacing Diagrams

Two lacing diagrams are **equivalent** if one can be obtained from the other by permuting vertices within a column.

Equivalence Classes of Lacing Diagrams

Two lacing diagrams are **equivalent** if one can be obtained from the other by permuting vertices within a column.

{Equivalence Classes of Lacing Diagrams}

\$

{Isomorphism Classes of Representations of Q}

 $m_{[i,j]}(\mathcal{L}) = |\{\text{strands starting at column } i \text{ and ending at column } j\}|$

 $m_{[i,j]}(\mathcal{L}) = |\{\text{strands starting at column } i \text{ and ending at column } j\}|$

Example: $m_{[1,2]}(\mathcal{L}) = 2$

 $m_{[i,j]}(\mathcal{L}) = |\{\text{strands starting at column } i \text{ and ending at column } j\}|$

Example: $m_{[4,4]}(\mathcal{L}) = 1$

Strands record the decomposition of $V_{\mathcal{L}}$ into indecomposable representations:

$$V_{\mathcal{L}} \cong \oplus V_{[i,j]}^{\oplus m_{[i,j]}(\mathcal{L})}$$

Example:
$$V_{\mathcal{L}} \cong V_{[1,2]}^{\oplus 2} \oplus V_{[2,3]} \oplus V_{[2,4]} \oplus V_{[3,3]} \oplus V_{[4,4]}$$

Reineke's Identities

The Quantum Dilogarithm Series

$$\mathbb{E}(z) = \sum_{k=0}^{\infty} rac{q^{k^2/2} z^k}{(1-q)(1-q^2)\dots(1-q^k)}$$

The Quantum Algebra \mathbb{A}_Q is an algebra over $\mathbb{Q}(q^{1/2})$ with

generators:

$$\{y_{\mathbf{d}}: \mathbf{d} \in \mathbb{N}^{Q_0}\}$$

• multiplication:

$$y_{\mathbf{d}_1}y_{\mathbf{d}_2} = q^{\frac{1}{2}(\chi(\mathbf{d}_2,\mathbf{d}_1)-\chi(\mathbf{d}_1,\mathbf{d}_2))}y_{\mathbf{d}_1+\mathbf{d}_2}$$

The Euler form $\chi: \mathbb{N}^{Q_0} \times \mathbb{N}^{Q_0} \to \mathbb{Z}$

$$\chi(\mathbf{d}_1, \mathbf{d}_2) = \sum_{i \in Q_0} \mathbf{d}_1(i) \mathbf{d}_2(i) - \sum_{\substack{i \stackrel{a}{\rightarrow} j \in Q_1}} \mathbf{d}_1(i) \mathbf{d}_2(j)$$

Given a representation V, we'll write \mathbf{d}_V as a shorthand for $\mathbf{d}_{\dim(V)}$.

For a Dynkin quiver, it is possible to fix a choice of ordering on the

- simple representations: $\alpha_1, \ldots, \alpha_n$
- indecomposable representations: β_1, \ldots, β_N

so that

$$\mathbb{E}(y_{\mathbf{d}_{\alpha_1}})\cdots\mathbb{E}(y_{\mathbf{d}_{\alpha_n}})=\mathbb{E}(y_{\mathbf{d}_{\beta_1}})\cdots\mathbb{E}(y_{\mathbf{d}_{\beta_N}})$$
(1)

(Original proof given by [Rei10], see [Kel11] for exposition and a sketch of the proof.)

Looking at the coefficient of y_d on each side, this is equivalent to the following infinite family of identities ([Rim13]):

$$\prod_{i=1}^n \frac{1}{(q)_{\mathsf{d}(i)}} = \sum_{\eta} q^{\texttt{codim}_{\mathbb{C}}(\eta)} \prod_{i=1}^N \frac{1}{(q)_{m_{\beta_i}(\eta)}}.$$

where the sum is over orbits η in $\operatorname{Rep}_Q(\mathbf{d})$ and $m_\beta(\eta)$ is the multiplicity of β in $V \in \eta$.

Here, $(q)_k = (1 - q) \cdots (1 - q^k)$ is the *q*-shifted factorial.

Some Bookkeeping

Fix a sequence of permutations $\mathbf{w} = (w^{(1)}, \dots, w^{(n)})$, so that $w^{(i)} \in \mathfrak{S}_i$ and $w^{(i)}(i) = i$.

Let

$$s_i^j(\mathcal{L}) = m_{[i,j-1]}(\mathcal{L})$$

and

$$t_i^k(\mathcal{L}) = m_{[i,k]}(\mathcal{L}) + m_{[i,k+1]}(\mathcal{L}) + \ldots + m_{[i,n]}(\mathcal{L}).$$

Define the **Durfee statistic**:

$$r_{\mathbf{w}}(\mathcal{L}) = \sum_{1 \leq i < j \leq k \leq n} s_{w^{(k)}(i)}^k(\mathcal{L}) t_{w^{(k)}(j)}^k(\mathcal{L}).$$

Some Bookkeeping

Fix a sequence of permutations $\mathbf{w} = (w^{(1)}, \dots, w^{(n)})$, so that $w^{(i)} \in \mathfrak{S}_i$ and $w^{(i)}(i) = i$.

Let

$$s_i^j(\mathcal{L}) = m_{[i,j-1]}(\mathcal{L})$$

and

$$t_i^k(\mathcal{L}) = m_{[i,k]}(\mathcal{L}) + m_{[i,k+1]}(\mathcal{L}) + \ldots + m_{[i,n]}(\mathcal{L}).$$

Define the **Durfee statistic**:

$$r_{\mathbf{w}}(\mathcal{L}) = \sum_{1 \leq i < j \leq k \leq n} s_{w^{(k)}(i)}^k(\mathcal{L}) t_{w^{(k)}(j)}^k(\mathcal{L}).$$

The above statistics are all constant on equivalence classes of lacing diagrams.

Theorem (Rimányi, Weigandt, Yong, 2016)

Fix a dimension vector ${\bf d}=({\bf d}(1),\ldots,{\bf d}(n))$ and let ${\bf w}$ be as before. Then

$$\prod_{k=1}^{n} \frac{1}{(q)_{\mathbf{d}(k)}} = \sum_{\eta \in \mathbf{L}(\mathbf{d})} q^{r_{\mathbf{w}}(\eta)} \prod_{k=1}^{n} \frac{1}{(q)_{t_{k}^{k}(\eta)}} \prod_{i=1}^{k-1} \left[t_{i}^{k}(\eta) + s_{i}^{k}(\eta) \atop s_{i}^{k}(\eta) \right]_{q}$$

 $\begin{bmatrix} j+k\\k \end{bmatrix}_q$ is the *q*-binomial coefficient and $(q)_k$ the *q*-shifted factorial.

Generating Series for Partitions

Let S be a set equipped with a weight function

wt :
$$S \to \mathbb{N}$$

so that

$$|\{s\in S: \mathtt{wt}(s)=k\}|<\infty$$

for each $k \in \mathbb{N}$.

The **generating series** for S is

$$G(S,q) = \sum_{s \in S} q^{\operatorname{wt}(s)}.$$

An integer partition is an ordered list of decreasing integers:

$$\lambda = \lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_{\ell(\lambda)} > 0$$

We will typically represent a partition by its Young diagram:

We weight a partition by counting the boxes in its Young diagram.

Generating Series for Partitions

Anna Weigandt Partition Identities and Quiver Representations

Generating Series for Partitions

• Let $\mathcal{R}(j, k)$ be the set consisting of a single rectangular partition of size $j \times k$.

 $G(\mathcal{R}(j,k),q) =$

• Let $\mathcal{R}(j, k)$ be the set consisting of a single rectangular partition of size $j \times k$.

$$G(\mathcal{R}(j,k),q)=q^{jk}$$
• Let $\mathcal{R}(j, k)$ be the set consisting of a single rectangular partition of size $j \times k$.

$$G(\mathcal{R}(j,k),q)=q^{jk}$$

Let P(j, k) be the set of partitions constrained to a j × k
 box. (Here, we allow j, k = ∞).

 $G(\mathcal{P}(j,k),q) =$

• Let $\mathcal{R}(j, k)$ be the set consisting of a single rectangular partition of size $j \times k$.

$$G(\mathcal{R}(j,k),q)=q^{jk}$$

Let P(j, k) be the set of partitions constrained to a j × k
 box. (Here, we allow j, k = ∞).

 $G(\mathcal{P}(j,k),q) = ??$

$\mathcal{P}(\infty, k)$: Partitions With at Most k Columns

Idea: Truncate the product

$\mathcal{P}(\infty, k)$: Partitions With at Most k Columns

Idea: Truncate the product

$$rac{1}{(q)_k} = \prod_{i=1}^k rac{1}{(1-q^i)}$$

$\mathcal{P}(k,\infty)$: Partitions With at Most k Rows

Idea: Bijection via conjugation

$\mathcal{P}(k,\infty)$: Partitions With at Most k Rows

Idea: Bijection via conjugation

$$rac{1}{(q)_k} = \prod_{i=1}^k rac{1}{(1-q^i)}$$

q-Binomial Coefficient:

If x and y are q commuting (yx = qxy),

$$(x+y)^n = \sum_{i+j=n} \begin{bmatrix} i+j\\i \end{bmatrix}_q x^i y^j.$$

Combinatorial Interpretation of the q-Binomial Coefficient

$$(x+y)^{11} = \ldots + yyxyxyyxxyy + \ldots$$

Combinatorial Interpretation of the q-Binomial Coefficient

$$(x+y)^{11} = \ldots + yyxyxyyxxyy + \ldots$$

$$G(\mathcal{P}(i,j),q) = \begin{bmatrix} i+j\\i \end{bmatrix}_q$$

Combinatorial Interpretation of the q-Binomial Coefficient

$$(x+y)^{11} = \ldots + yyxyxyyxxyy + \ldots$$

$$G(\mathcal{P}(i,j),q) = \begin{bmatrix} i+j\\i \end{bmatrix}_q = \frac{(q)_{i+j}}{(q)_i(q)_j}$$

Durfee Squares and Rectangles

The **Durfee square** $D(\lambda)$ is the largest $j \times j$ square partition contained in λ .

The **Durfee square** $D(\lambda)$ is the largest $j \times j$ square partition contained in λ .

$\mathcal{P}(\infty,\infty) \quad \longleftrightarrow \quad igcup_{j\geq 0} \mathcal{R}(j,j) imes \mathcal{P}(j,\infty) imes \mathcal{P}(\infty,j)$

$$\mathcal{P}(\infty,\infty) \quad \longleftrightarrow \quad igcup_{j\geq 0} \mathcal{R}(j,j) imes \mathcal{P}(j,\infty) imes \mathcal{P}(\infty,j)$$

Euler-Gauss identity:

$$\frac{1}{(q)_{\infty}} = \sum_{j=0}^{\infty} \frac{q^{j^2}}{(q)_j(q)_j}$$
(2)

See [And98] for details and related identities.

Durfee Rectangles

The **Durfee Rectangle** $D(\lambda, r)$ is the largest $s \times (s + r)$ rectangular partition contained in λ .

Durfee Rectangles

The **Durfee Rectangle** $D(\lambda, r)$ is the largest $s \times (s + r)$ rectangular partition contained in λ .

$$\frac{1}{(q)_{\infty}} = \sum_{s=0}^{\infty} \frac{q^{s(s+r)}}{(q)_s(q)_{s+r}}.$$
(3)

([GH68])

Proof of the Main Theorem

Theorem (Rimányi, Weigandt, Yong, 2016)

Fix a dimension vector ${\bf d}=({\bf d}(1),\ldots,{\bf d}(n))$ and let ${\bf w}$ be as before. Then

$$\prod_{k=1}^{n} \frac{1}{(q)_{\mathbf{d}(k)}} = \sum_{\eta \in \mathbf{L}(\mathbf{d})} q^{r_{\mathbf{w}}(\eta)} \prod_{k=1}^{n} \frac{1}{(q)_{t_{k}^{k}(\eta)}} \prod_{i=1}^{k-1} \left[t_{i}^{k}(\eta) + s_{i}^{k}(\eta) \atop s_{i}^{k}(\eta) \right]_{q}$$

Theorem (Rimányi, Weigandt, Yong, 2016)

Fix a dimension vector $\mathbf{d} = (\mathbf{d}(1), \dots, \mathbf{d}(n))$ and let \mathbf{w} be as before. Then

$$\prod_{k=1}^{n} \frac{1}{(q)_{\mathbf{d}(k)}} = \sum_{\eta \in \mathbf{L}(\mathbf{d})} q^{r_{\mathbf{w}}(\eta)} \prod_{k=1}^{n} \frac{1}{(q)_{t_{k}^{k}(\eta)}} \prod_{i=1}^{k-1} \left[t_{i}^{k}(\eta) + s_{i}^{k}(\eta) \atop s_{i}^{k}(\eta) \right]_{q}$$

Idea: We will interpret each side as a generating series for tuples of partitions. Giving a weight preserving bijection between these two sets proves the identity.

The Left Hand Side

$$S = \mathcal{P}(\infty, \mathbf{d}(1)) \times \ldots \times \mathcal{P}(\infty, \mathbf{d}(n))$$

The Left Hand Side

$$S = \mathcal{P}(\infty, \mathbf{d}(1)) \times \ldots \times \mathcal{P}(\infty, \mathbf{d}(n))$$

$$G(S,q) = \prod_{i=1}^n G(\mathcal{P}(\infty,\mathbf{d}(i)),q) = \prod_{i=1}^n \frac{1}{(q)_{\mathbf{d}(i)}}$$

Anna Weigandt Partition Identities and Quiver Representations

The Right Hand Side

The Right Hand Side

$$G(T,q) = \sum_{\eta \in \mathtt{L}(\mathtt{d})} G(R(\eta),q) G(P(\eta),q)$$

Let
$$\mathbf{w} = (1, 12, 123, 1234)$$
 and $\mathbf{d} = (8, 9, 11, 8)$.

$$oldsymbol{\lambda} = (\lambda^{(1)},\lambda^{(2)},\lambda^{(3)},\lambda^{(4)}) \in S$$

 $oldsymbol{\lambda}\mapsto(oldsymbol{\mu},oldsymbol{
u})$

 $\lambda^{(1)}$

 $\lambda^{(2)}$

 $\lambda^{(2)}$

 $\lambda^{(2)}$

Lemma

There exists a unique $\eta \in L(\mathbf{d})$ so that $s_i^k(\eta) = s_i^k$ and $t_j^k(\eta) = t_j^k$ for all i, j, k.

For any η ,

$$s_{i}^{k}(\eta) + t_{i}^{k}(\eta) = t_{i}^{k-1}(\eta)$$
 (4)

For any η ,

$$s_i^k(\eta) + t_i^k(\eta) = t_i^{k-1}(\eta)$$
 (4)

The parameters defined by Durfee rectangles satisfy the *same* equations:

 $oldsymbol{\lambda}\mapsto(oldsymbol{\mu},oldsymbol{
u})\in T(\eta)\subseteq T$

Connection with Reineke's Identity (in type A)

$$\frac{1}{(q)_{t_1^1}} \begin{bmatrix} s_1^2 + t_1^2 \\ s_1^2 \end{bmatrix}_q \begin{bmatrix} s_1^3 + t_1^3 \\ s_1^3 \end{bmatrix}_q \begin{bmatrix} s_1^4 + t_1^4 \\ s_1^4 \end{bmatrix}_q$$

$$\begin{split} \frac{1}{(q)_{t_1^1}} & \left[s_1^2 + t_1^2 \\ s_1^2 \right]_q \left[s_1^3 + t_1^3 \\ s_1^3 \right]_q \left[s_1^4 + t_1^4 \\ s_1^4 \right]_q \\ &= \left(\frac{1}{(q)_{t_1^1}} \right) \left(\frac{(q)_{s_1^2 + t_1^2}}{(q)_{s_1^2}(q)_{t_1^2}} \right) \left(\frac{(q)_{s_1^3 + t_1^3}}{(q)_{s_1^3}(q)_{t_1^3}} \right) \left(\frac{(q)_{s_1^4 + t_1^4}}{(q)_{s_1^4}(q)_{t_1^4}} \right) \end{split}$$

$$\begin{split} \frac{1}{(q)_{t_1^1}} & \left[s_1^2 + t_1^2 \\ s_1^2 \right]_q \left[s_1^3 + t_1^3 \\ s_1^3 \right]_q \left[s_1^4 + t_1^4 \\ s_1^4 \right]_q \\ &= \left(\frac{1}{(q)_{t_1^1}} \right) \left(\frac{(q)_{s_1^2} + t_1^2}{(q)_{s_1^2}(q)_{t_1^2}} \right) \left(\frac{(q)_{s_1^3} + t_1^3}{(q)_{s_1^3}(q)_{t_1^3}} \right) \left(\frac{(q)_{s_1^4} + t_1^4}{(q)_{s_1^4}(q)_{t_1^4}} \right) \end{split}$$

$$\begin{split} \frac{1}{(q)_{t_1^1}} & \left[\begin{array}{c} s_1^2 + t_1^2 \\ s_1^2 \end{array} \right]_q \left[\begin{array}{c} s_1^3 + t_1^3 \\ s_1^3 \end{array} \right]_q \left[\begin{array}{c} s_1^4 + t_1^4 \\ s_1^4 \end{array} \right]_q \\ &= \left(\frac{1}{(q)_{t_1^1}} \right) \left(\begin{array}{c} (q)_{s_1^2} + t_1^2 \\ (q)_{s_1^2}(q)_{t_1^2} \end{array} \right) \left(\begin{array}{c} (q)_{s_1^3} + t_1^3 \\ (q)_{s_1^3}(q)_{t_1^3} \end{array} \right) \left(\begin{array}{c} (q)_{s_1^4} + t_1^4 \\ (q)_{s_1^4}(q)_{t_1^4} \end{array} \right) \\ &= \frac{1}{(q)_{s_1^2}(q)_{s_1^3}(q)_{s_1^4}(q)_{t_1^4}} \end{split}$$

$$\begin{split} \frac{1}{(q)_{t_1^1}} \begin{bmatrix} s_1^2 + t_1^2 \\ s_1^2 \end{bmatrix}_q \begin{bmatrix} s_1^3 + t_1^3 \\ s_1^3 \end{bmatrix}_q \begin{bmatrix} s_1^4 + t_1^4 \\ s_1^4 \end{bmatrix}_q \\ = \left(\frac{1}{(q)_{t_1^1}}\right) \left(\frac{(q)_{s_1^2} + t_1^2}{(q)_{s_1^2}(q)_{t_1^2}}\right) \left(\frac{(q)_{s_1^3} + t_1^3}{(q)_{s_1^3}(q)_{t_1^3}}\right) \left(\frac{(q)_{s_1^4} + t_1^4}{(q)_{s_1^4}(q)_{t_1^4}}\right) \\ &= \frac{1}{(q)_{s_1^2}(q)_{s_1^3}(q)_{s_1^3}(q)_{s_1^4}(q)_{t_1^4}} \\ &= \frac{1}{(q)_{m_{[1,1]}}(q)_{m_{[1,2]}}(q)_{m_{[1,3]}}(q)_{m_{[1,4]}}} \end{split}$$

Doing these cancellations yields the identity:

Doing these cancellations yields the identity:

Corollary (Rimányi, Weigandt, Yong, 2016)
$$\prod_{i=1}^{n} \frac{1}{(q)_{\mathbf{d}(i)}} = \sum_{\eta \in \mathbf{L}(\mathbf{d})} q^{r_{\mathbf{w}}(\eta)} \prod_{1 \le i \le j \le n} \frac{1}{(q)_{m_{[i,j]}(\eta)}}.$$

which looks very similar to:

$$\prod_{i=1}^n rac{1}{(q)_{\mathbf{d}(i)}} = \sum_\eta q^{ ext{codim}_\mathbb{C}(\eta)} \prod_{i=1}^N rac{1}{(q)_{m_{eta_i}(\eta)}}.$$

A Special Sequence of Permutations

We associate permutations $w_Q^{(i)} \in \mathfrak{S}_i$ to Q as follows:

- Let $w_Q^{(1)} = 1$ and $w_Q^{(2)} = 12$.
- If a_{i-2} and a_{i-1} point in the same direction, append i to $w_Q^{(i-1)}$
- If a_{i-2} and a_{i-1} point in opposite directions, reverse w_Q⁽ⁱ⁻¹⁾ and then append i

$$\mathbf{w}_Q := (w_Q^{(1)}, \ldots, w_Q^{(n)})$$

A Special Sequence of Permutations

We associate permutations $w_Q^{(i)} \in \mathfrak{S}_i$ to Q as follows:

- Let $w_Q^{(1)} = 1$ and $w_Q^{(2)} = 12$.
- If a_{i-2} and a_{i-1} point in the same direction, append i to $w_Q^{(i-1)}$
- If a_{i-2} and a_{i-1} point in opposite directions, reverse w_Q⁽ⁱ⁻¹⁾ and then append i

$$\mathbf{w}_Q := (w_Q^{(1)}, \dots, w_Q^{(n)})$$

Example:

•
$$\mathbf{w}_Q = (1, 12, 123, 3214, 32145, 541236)$$

The Durfee statistic has the following geometric meaning:

Theorem (Rimányi, Weigandt, Yong, 2016) $\operatorname{codim}_{\mathbb{C}}(\eta) = r_{\mathbf{w}_{O}}(\eta)$

The above statement combined with the corollary implies Reineke's quantum dilogarithm identity in type A.

S. Abeasis and A. Del Fra.

Degenerations for the representations of a quiver of type Am. *Journal of Algebra*, 93(2):376–412, 1985.

G. E. Andrews.

The theory of partitions.

2. Cambridge university press, 1998.

A. S. Buch and R. Rimányi. A formula for non-equioriented quiver orbits of type a. arXiv preprint math/0412073, 2004.

M

M. Brion.

Representations of quivers. 2008.

P. Gabriel.

Finite representation type is open.

In Representations of algebras, pages 132–155. Springer, 1975.

B. Gordon and L. Houten.

Notes on plane partitions. ii.

Journal of Combinatorial Theory, 4(1):81-99, 1968.

B. Keller.

On cluster theory and quantum dilogarithm identities. In *Representations of algebras and related topics*, EMS Ser. Congr. Rep., pages 85–116. Eur. Math. Soc., Zürich, 2011.

 A. Knutson, E. Miller and M. Shimozono.
 Four positive formulae for type A quiver polynomials. Inventiones mathematicae, 166(2):229–325, 2006.

M. Reineke.

Poisson automorphisms and quiver moduli.

Journal of the Institute of Mathematics of Jussieu, 9(03):653–667, 2010.

On the cohomological Hall algebra of Dynkin quivers. *arXiv:1303.3399*, 2013.

Thank You!

Anna Weigandt Partition Identities and Quiver Representations