Partition Identities and Quiver Representations

Anna Weigandt
University of Illinois at Urbana-Champaign
weigndt2@illinois.edu

November 20th, 2017

Based on joint work with Richárd Rimányi and Alexander Yong
arXiv:1608.02030

Overview

This project provides an elementary explanation for a quantum dilogarithm identity due to M. Reineke.

We use generating function techniques to establish a related identity, which is a generalization of the Euler-Gauss identity.

This reduces to an equivalent form of Reineke's identity in type A.

Representations of Quivers

Quivers

A quiver $Q=\left(Q_{0}, Q_{1}\right)$ is a directed graph with

- vertices: $i \in Q_{0}$
- edges: $a: i \rightarrow j \in Q_{1}$

The Definition

A representation of Q is an assignment of a:

- vector space V_{i} to each vertex $i \in Q_{0}$ and
- linear transformation $f_{a}: V_{i} \rightarrow V_{j}$ to each arrow $i \xrightarrow{a} j \in Q_{1}$

$\operatorname{dim}(V)=\left(\operatorname{dim} V_{i}\right)_{i \in Q_{0}}$ is the dimension vector of V.

The Representation Space

Fix $\mathbf{d} \in \mathbb{N}^{Q_{0}}$. The representation space is

$$
\operatorname{Rep}_{Q}(\mathbf{d}):=\bigoplus_{i \rightarrow j}^{\boldsymbol{a} \rightarrow Q_{1}} \boldsymbol{M a t}(\mathbf{d}(i), \mathbf{d}(j))
$$

Let

$$
\mathrm{GL}_{Q}(\mathbf{d}):=\prod_{i \in Q_{0}} \mathrm{GL}(\mathbf{d}(i))
$$

$\mathrm{GL}_{Q}(\mathbf{d})$ acts on $\operatorname{Rep}_{Q}(\mathbf{d})$ by base change at each vertex.
Orbits of this action are in bijection with isomorphism classes of \mathbf{d} dimensional representations.

Dynkin Quivers

A quiver is Dynkin if its underlying graph is of type $A D E$:

E_{l}

Gabriel's Theorem

Theorem ([Gab75])

Dynkin quivers have finitely many isomorphism classes of indecomposable representations.

For type A, indecomposables $V_{[i, j]}$ are indexed by intervals.

Lacing Diagrams

A lacing diagram ([ADF85]) \mathcal{L} is a graph so that:

- the vertices are arranged in n columns labeled $1,2, \ldots, n$
- the edges between adjacent columns form a partial matching.

Lacing Diagrams

A lacing diagram ([ADF85]) \mathcal{L} is a graph so that:

- the vertices are arranged in n columns labeled $1,2, \ldots, n$
- the edges between adjacent columns form a partial matching.

Idea: Lacing diagrams are a way to visually encode representations of an A_{n} quiver.

The Role of Lacing Diagrams in Representation Theory

When Q is a type A quiver, a lacing diagram can be interpreted as a sequence of partial permutation matrices which form a representation $V_{\mathcal{L}}$ of Q.

$$
\left(\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\right)
$$

See [KMS06] for the equiorientated case and [BR04] for arbitrary orientations.

Equivalence Classes of Lacing Diagrams

Two lacing diagrams are equivalent if one can be obtained from the other by permuting vertices within a column.

Equivalence Classes of Lacing Diagrams

Two lacing diagrams are equivalent if one can be obtained from the other by permuting vertices within a column.

\{Equivalence Classes of Lacing Diagrams\}

$\{$ Isomorphism Classes of Representations of $Q\}$

Strands

A strand is a connected component of \mathcal{L}.

Strands

A strand is a connected component of \mathcal{L}.

$m_{[i, j]}(\mathcal{L})=\mid\{$ strands starting at column i and ending at column $j\} \mid$

Strands

A strand is a connected component of \mathcal{L}.

$m_{[i, j]}(\mathcal{L})=\mid\{$ strands starting at column i and ending at column $j\} \mid$

Example: $\quad m_{[1,2]}(\mathcal{L})=2$

Strands

A strand is a connected component of \mathcal{L}.

$m_{[i, j]}(\mathcal{L})=\mid\{$ strands starting at column i and ending at column $j\} \mid$

Example: $\quad m_{[4,4]}(\mathcal{L})=1$

Strands

Strands record the decomposition of $V_{\mathcal{L}}$ into indecomposable representations:

$$
V_{\mathcal{L}} \cong \oplus V_{[i, j]}^{\oplus m_{[i, j]}(\mathcal{L})}
$$

Example: $V_{\mathcal{L}} \cong V_{[1,2]}^{\oplus 2} \oplus V_{[2,3]} \oplus V_{[2,4]} \oplus V_{[3,3]} \oplus V_{[4,4]}$

Reineke's Identities

The Quantum Dilogarithm Series

$$
\mathbb{E}(z)=\sum_{k=0}^{\infty} \frac{q^{k^{2} / 2} z^{k}}{(1-q)\left(1-q^{2}\right) \ldots\left(1-q^{k}\right)}
$$

The Quantum Algebra of a Quiver

The Quantum Algebra \mathbb{A}_{Q} is an algebra over $\mathbb{Q}\left(q^{1 / 2}\right)$ with

- generators:

$$
\left\{y_{\mathbf{d}}: \mathbf{d} \in \mathbb{N}^{Q_{0}}\right\}
$$

- multiplication:

$$
y_{\mathbf{d}_{1}} y_{\mathbf{d}_{2}}=q^{\frac{1}{2}\left(\chi\left(\mathbf{d}_{2}, \mathbf{d}_{1}\right)-\chi\left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)\right)} y_{\mathbf{d}_{1}+\mathbf{d}_{2}}
$$

The Euler form $\chi: \mathbb{N}^{Q_{0}} \times \mathbb{N}^{Q_{0}} \rightarrow \mathbb{Z}$

$$
\chi\left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)=\sum_{i \in Q_{0}} \mathbf{d}_{1}(i) \mathbf{d}_{2}(i)-\sum_{i \xrightarrow{a} j \in Q_{1}} \mathbf{d}_{1}(i) \mathbf{d}_{2}(j)
$$

Reineke's Identity

Given a representation V, we'll write \mathbf{d}_{V} as a shorthand for $\mathbf{d}_{\operatorname{dim}(V)}$.

For a Dynkin quiver, it is possible to fix a choice of ordering on the

- simple representations: $\alpha_{1}, \ldots, \alpha_{n}$
- indecomposable representations: $\beta_{1}, \ldots, \beta_{N}$
so that

$$
\begin{equation*}
\mathbb{E}\left(y_{\mathbf{d}_{\alpha_{1}}}\right) \cdots \mathbb{E}\left(y_{\mathbf{d}_{\alpha_{n}}}\right)=\mathbb{E}\left(y_{\mathbf{d}_{\beta_{1}}}\right) \cdots \mathbb{E}\left(y_{\mathbf{d}_{\beta_{N}}}\right) \tag{1}
\end{equation*}
$$

(Original proof given by [Rei10], see [Kel11] for exposition and a sketch of the proof.)

Reformulation

Looking at the coefficient of $y_{\mathbf{d}}$ on each side, this is equivalent to the following infinite family of identities ([Rim13]):

$$
\prod_{i=1}^{n} \frac{1}{(q)_{\mathbf{d}(i)}}=\sum_{\eta} q^{\operatorname{codim}(\eta)} \prod_{i=1}^{N} \frac{1}{(q)_{m_{\beta_{i}}(\eta)}}
$$

where the sum is over orbits η in $\operatorname{Rep}_{Q}(\mathbf{d})$ and $m_{\beta}(\eta)$ is the multiplicity of β in $V \in \eta$.

Here, $(q)_{k}=(1-q) \cdots\left(1-q^{k}\right)$ is the q-shifted factorial.

Some Bookkeeping

Fix a sequence of permutations $\mathbf{w}=\left(w^{(1)}, \ldots, w^{(n)}\right)$, so that $w^{(i)} \in \mathfrak{S}_{i}$ and $w^{(i)}(i)=i$.

Let

$$
s_{i}^{j}(\mathcal{L})=m_{[i, j-1]}(\mathcal{L})
$$

and

$$
t_{i}^{k}(\mathcal{L})=m_{[i, k]}(\mathcal{L})+m_{[i, k+1]}(\mathcal{L})+\ldots+m_{[i, n]}(\mathcal{L})
$$

Define the Durfee statistic:

$$
r_{\mathbf{w}}(\mathcal{L})=\sum_{1 \leq i<j \leq k \leq n} s_{w^{(k)}(i)}^{k}(\mathcal{L}) t_{w^{(k)}(j)}^{k}(\mathcal{L})
$$

Some Bookkeeping

Fix a sequence of permutations $\mathbf{w}=\left(w^{(1)}, \ldots, w^{(n)}\right)$, so that $w^{(i)} \in \mathfrak{S}_{i}$ and $w^{(i)}(i)=i$.

Let

$$
s_{i}^{j}(\mathcal{L})=m_{[i, j-1]}(\mathcal{L})
$$

and

$$
t_{i}^{k}(\mathcal{L})=m_{[i, k]}(\mathcal{L})+m_{[i, k+1]}(\mathcal{L})+\ldots+m_{[i, n]}(\mathcal{L})
$$

Define the Durfee statistic:

$$
r_{\mathbf{w}}(\mathcal{L})=\sum_{1 \leq i<j \leq k \leq n} s_{w^{(k)}(i)}^{k}(\mathcal{L}) t_{w^{(k)}(j)}^{k}(\mathcal{L})
$$

The above statistics are all constant on equivalence classes of lacing diagrams.

Theorem (Rimányi, Weigandt, Yong, 2016)

Fix a dimension vector $\mathbf{d}=(\mathbf{d}(1), \ldots, \mathbf{d}(n))$ and let \mathbf{w} be as before. Then

$$
\prod_{k=1}^{n} \frac{1}{(q)_{\mathbf{d}(k)}}=\sum_{\eta \in \mathrm{L}(\mathbf{d})} q^{r_{\mathbf{w}}(\eta)} \prod_{k=1}^{n} \frac{1}{(q)_{t_{k}^{k}(\eta)}} \prod_{i=1}^{k-1}\left[\begin{array}{c}
t_{i}^{k}(\eta)+s_{i}^{k}(\eta) \\
s_{i}^{k}(\eta)
\end{array}\right]_{q}
$$

$\left[\begin{array}{c}j+k \\ k\end{array}\right]_{q}$ is the q-binomial coefficient and $(q)_{k}$ the q-shifted factorial.

Generating Series for Partitions

Generating Series

Let S be a set equipped with a weight function

$$
\text { wt }: S \rightarrow \mathbb{N}
$$

so that

$$
|\{s \in S: w t(s)=k\}|<\infty
$$

for each $k \in \mathbb{N}$.
The generating series for S is

$$
G(S, q)=\sum_{s \in S} q^{\mathrm{wt}(s)}
$$

Partitions

An integer partition is an ordered list of decreasing integers:

$$
\lambda=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\ell(\lambda)}>0
$$

We will typically represent a partition by its Young diagram:

We weight a partition by counting the boxes in its Young diagram.

Generating Series for Partitions

Generating Series for Partitions

\square

Generating Series for Partitions

\square

$$
\frac{1}{(q)_{\infty}}=\prod_{k=1}^{\infty} \frac{1}{\left(1-q^{k}\right)}
$$

Generating Series for Partitions

$\frac{1}{(q)_{\infty}}=\prod_{k=1}^{\infty} \frac{1}{\left(1-q^{k}\right)}=\prod_{k=1}^{\infty}\left(1+q^{k}+q^{2 k}+q^{3 k}+\ldots\right)$

Generating Series for Partitions

$$
\begin{gathered}
\frac{1}{(q)_{\infty}}=\prod_{k=1}^{\infty} \frac{1}{\left(1-q^{k}\right)}=\prod_{k=1}^{\infty}\left(1+q^{k}+q^{2 k}+q^{3 k}+\ldots\right) \\
q^{16}=q^{1} \cdot 1 \cdot q^{3 \cdot 3} \cdot 1 \cdot 1 \cdot q^{6} \cdot 1 \cdot 1 \cdot \ldots
\end{gathered}
$$

Notation

- Let $\mathcal{R}(j, k)$ be the set consisting of a single rectangular partition of size $j \times k$.

$$
G(\mathcal{R}(j, k), q)=
$$

Notation

- Let $\mathcal{R}(j, k)$ be the set consisting of a single rectangular partition of size $j \times k$.

$$
G(\mathcal{R}(j, k), q)=q^{j k}
$$

Notation

- Let $\mathcal{R}(j, k)$ be the set consisting of a single rectangular partition of size $j \times k$.

$$
G(\mathcal{R}(j, k), q)=q^{j k}
$$

- Let $\mathcal{P}(j, k)$ be the set of partitions constrained to a $j \times k$ box. (Here, we allow $j, k=\infty$).

$$
G(\mathcal{P}(j, k), q)=
$$

Notation

- Let $\mathcal{R}(j, k)$ be the set consisting of a single rectangular partition of size $j \times k$.

$$
G(\mathcal{R}(j, k), q)=q^{j k}
$$

- Let $\mathcal{P}(j, k)$ be the set of partitions constrained to a $j \times k$ box. (Here, we allow $j, k=\infty$).

$$
G(\mathcal{P}(j, k), q)=? ?
$$

$\mathcal{P}(\infty, k)$: Partitions With at Most k Columns

Idea: Truncate the product

$\mathcal{P}(\infty, k)$: Partitions With at Most k Columns

Idea: Truncate the product

$$
\frac{1}{(q)_{k}}=\prod_{i=1}^{k} \frac{1}{\left(1-q^{i}\right)}
$$

$\mathcal{P}(k, \infty)$: Partitions With at Most k Rows

Idea: Bijection via conjugation

$\mathcal{P}(k, \infty)$: Partitions With at Most k Rows

Idea: Bijection via conjugation

$$
\frac{1}{(q)_{k}}=\prod_{i=1}^{k} \frac{1}{\left(1-q^{i}\right)}
$$

q-Binomial Coefficients

q-Binomial Coefficient:

If x and y are q commuting ($y x=q x y$),

$$
(x+y)^{n}=\sum_{i+j=n}\left[\begin{array}{c}
i+j \\
i
\end{array}\right]_{q} x^{i} y^{j}
$$

Combinatorial Interpretation of the q-Binomial Coefficient

$$
(x+y)^{11}=\ldots+y y x y x y y x x y y+\ldots
$$

Combinatorial Interpretation of the q-Binomial Coefficient

$$
(x+y)^{11}=\ldots+y y x y x y y x x y y+\ldots
$$

$$
G(\mathcal{P}(i, j), q)=\left[\begin{array}{c}
i+j \\
i
\end{array}\right]_{q}
$$

Combinatorial Interpretation of the q-Binomial Coefficient

$$
(x+y)^{11}=\ldots+y y x y x y y x x y y+\ldots
$$

$$
G(\mathcal{P}(i, j), q)=\left[\begin{array}{c}
i+j \\
i
\end{array}\right]_{q}=\frac{(q)_{i+j}}{(q)_{i}(q)_{j}}
$$

Durfee Squares and Rectangles

Durfee Squares

The Durfee square $D(\lambda)$ is the largest $j \times j$ square partition contained in λ.

Durfee Squares

The Durfee square $D(\lambda)$ is the largest $j \times j$ square partition contained in λ.

Durfee Squares

$\mathcal{P}(\infty, \infty)$

$$
\bigcup_{j \geq 0} \mathcal{R}(j, j) \times \mathcal{P}(j, \infty) \times \mathcal{P}(\infty, j)
$$

Durfee Squares

$$
\mathcal{P}(\infty, \infty) \longleftrightarrow \bigcup_{j \geq 0} \mathcal{R}(j, j) \times \mathcal{P}(j, \infty) \times \mathcal{P}(\infty, j)
$$

Euler-Gauss identity:

$$
\begin{equation*}
\frac{1}{(q)_{\infty}}=\sum_{j=0}^{\infty} \frac{q^{j^{2}}}{(q)_{j}(q)_{j}} \tag{2}
\end{equation*}
$$

See [And98] for details and related identities.

Durfee Rectangles

The Durfee Rectangle $D(\lambda, r)$ is the largest $s \times(s+r)$ rectangular partition contained in λ.

Durfee Rectangles

The Durfee Rectangle $D(\lambda, r)$ is the largest $s \times(s+r)$ rectangular partition contained in λ.

$$
\begin{equation*}
\frac{1}{(q)_{\infty}}=\sum_{s=0}^{\infty} \frac{q^{s(s+r)}}{(q)_{s}(q)_{s+r}} \tag{3}
\end{equation*}
$$

([GH68])

Proof of the Main Theorem

Theorem (Rimányi, Weigandt, Yong, 2016)

Fix a dimension vector $\mathbf{d}=(\mathbf{d}(1), \ldots, \mathbf{d}(n))$ and let \mathbf{w} be as before. Then

$$
\prod_{k=1}^{n} \frac{1}{(q)_{\mathbf{d}(k)}}=\sum_{\eta \in \mathrm{L}(\mathbf{d})} q^{{ }^{\prime}(\eta)}(\eta) \prod_{k=1}^{n} \frac{1}{(q)_{t_{k}^{k}(\eta)}} \prod_{i=1}^{k-1}\left[\begin{array}{c}
t_{i}^{k}(\eta)+s_{i}^{k}(\eta) \\
s_{i}^{k}(\eta)
\end{array}\right]_{q}
$$

Theorem (Rimányi, Weigandt, Yong, 2016)

Fix a dimension vector $\mathbf{d}=(\mathbf{d}(1), \ldots, \mathbf{d}(n))$ and let \mathbf{w} be as before. Then

$$
\prod_{k=1}^{n} \frac{1}{(q)_{\mathbf{d}(k)}}=\sum_{\eta \in \mathrm{L}(\mathbf{d})} q^{{ }^{\prime}(\eta)}(\eta) \prod_{k=1}^{n} \frac{1}{(q)_{t_{k}^{k}(\eta)}} \prod_{i=1}^{k-1}\left[\begin{array}{c}
t_{i}^{k}(\eta)+s_{i}^{k}(\eta) \\
s_{i}^{k}(\eta)
\end{array}\right]_{q}
$$

Idea: We will interpret each side as a generating series for tuples of partitions. Giving a weight preserving bijection between these two sets proves the identity.

The Left Hand Side

$$
S=\mathcal{P}(\infty, \mathbf{d}(1)) \times \ldots \times \mathcal{P}(\infty, \mathbf{d}(n))
$$

The Left Hand Side

$$
S=\mathcal{P}(\infty, \mathbf{d}(1)) \times \ldots \times \mathcal{P}(\infty, \mathbf{d}(n))
$$

$$
G(S, q)=\prod_{i=1}^{n} G(\mathcal{P}(\infty, \mathbf{d}(i)), q)=\prod_{i=1}^{n} \frac{1}{(q)_{\mathbf{d}(i)}}
$$

The Right Hand Side

$$
T=\bigcup_{\eta \in L(\mathbf{d})} R(\eta) \times P(\eta)
$$

The Right Hand Side

$$
T=\bigcup_{\eta \in L(\mathbf{d})} R(\eta) \times P(\eta)
$$

$$
G(T, q)=\sum_{\eta \in \mathcal{L}(\mathbf{d})} G(R(\eta), q) G(P(\eta), q)
$$

The map $S \rightarrow T$

Let $\mathbf{w}=(1,12,123,1234)$ and $\mathbf{d}=(8,9,11,8)$.

$\boldsymbol{\lambda}=\left(\lambda^{(1)}, \lambda^{(2)}, \lambda^{(3)}, \lambda^{(4)}\right) \in \boldsymbol{S}$

$\lambda \mapsto(\mu, \nu)$

$\lambda^{(1)}$

$\lambda^{(1)}$

$\lambda^{(2)}$

$\lambda^{(4)}$

$\lambda^{(4)}$

$\lambda^{(4)}$

These Parameters are Well Defined

Lemma

There exists a unique $\eta \in \mathrm{L}(\mathbf{d})$ so that $s_{i}^{k}(\eta)=s_{i}^{k}$ and $t_{j}^{k}(\eta)=t_{j}^{k}$ for all i, j, k.

A Recursion

For any η,

$$
\begin{equation*}
s_{i}^{k}(\eta)+t_{i}^{k}(\eta)=t_{i}^{k-1}(\eta) \tag{4}
\end{equation*}
$$

A Recursion

For any η,

$$
\begin{equation*}
s_{i}^{k}(\eta)+t_{i}^{k}(\eta)=t_{i}^{k-1}(\eta) \tag{4}
\end{equation*}
$$

The parameters defined by Durfee rectangles satisfy the same equations:

$$
\boldsymbol{\lambda} \mapsto(\boldsymbol{\mu}, \boldsymbol{\nu}) \in T(\eta) \subseteq T
$$

Connection with Reineke's Identity (in type A)

Simplifying the Identity

Lets think about the blue terms:

$$
\frac{1}{(q)_{t_{1}^{1}}}\left[\begin{array}{c}
s_{1}^{2}+t_{1}^{2} \\
s_{1}^{2}
\end{array}\right]_{q}\left[\begin{array}{c}
s_{1}^{3}+t_{1}^{3} \\
s_{1}^{3}
\end{array}\right]_{q}\left[\begin{array}{c}
s_{1}^{4}+t_{1}^{4} \\
s_{1}^{4}
\end{array}\right]_{q}
$$

Simplifying the Identity

Lets think about the blue terms:

$$
\begin{gathered}
\frac{1}{(q)_{t_{1}^{1}}}\left[\begin{array}{c}
s_{1}^{2}+t_{1}^{2} \\
s_{1}^{2}
\end{array}\right]_{q}\left[\begin{array}{c}
s_{1}^{3}+t_{1}^{3} \\
s_{1}^{3}
\end{array}\right]_{q}\left[\begin{array}{c}
s_{1}^{4}+t_{1}^{4} \\
s_{1}^{4}
\end{array}\right]_{q} \\
=\left(\frac{1}{(q)_{t_{1}^{1}}}\right)\left(\frac{(q)_{s_{1}^{2}+t_{1}^{2}}}{(q)_{s_{1}^{2}}(q)_{t_{1}^{2}}}\right)\left(\frac{(q)_{s_{1}^{3}+t_{1}^{3}}}{(q)_{s_{1}^{3}}(q)_{t_{1}^{3}}}\right)\left(\frac{(q)_{s_{1}^{4}+t_{1}^{4}}}{(q)_{s_{1}^{4}}(q)_{t_{1}^{4}}}\right)
\end{gathered}
$$

Simplifying the Identity

Lets think about the blue terms:

$$
\begin{gathered}
\frac{1}{(q)_{t_{1}^{1}}}\left[\begin{array}{c}
s_{1}^{2}+t_{1}^{2} \\
s_{1}^{2}
\end{array}\right]_{q}\left[\begin{array}{c}
s_{1}^{3}+t_{1}^{3} \\
s_{1}^{3}
\end{array}\right]_{q}\left[\begin{array}{c}
s_{1}^{4}+t_{1}^{4} \\
s_{1}^{4}
\end{array}\right]_{q} \\
=\left(\frac{1}{(q)}\right)\left(\frac{(q))_{s_{1}^{1}}+t_{1}^{2}}{\left.(q)_{s_{1}^{2}}(q)\right)_{t_{1}^{2}}}\right)\left(\frac{(q) s_{s_{1}^{3}+t_{1}^{3}}}{(q)_{s_{1}^{3}(q)}^{t_{1}^{3}}}\right)\left(\frac{(q) s_{s_{1}^{4}+t_{1}^{4}}}{(q)_{s_{1}^{4}}(q)_{t_{1}^{4}}}\right)
\end{gathered}
$$

Simplifying the Identity

Lets think about the blue terms:

$$
\begin{aligned}
& \frac{1}{(q)_{t_{1}^{1}}}\left[\begin{array}{c}
s_{1}^{2}+t_{1}^{2} \\
s_{1}^{2}
\end{array}\right]_{q}\left[\begin{array}{c}
s_{1}^{3}+t_{1}^{3} \\
s_{1}^{3}
\end{array}\right]_{q}\left[\begin{array}{c}
s_{1}^{4}+t_{1}^{4} \\
s_{1}^{4}
\end{array}\right]_{q} \\
& =\left(\frac{1}{(q)}\right)\left(\frac{(q))_{t_{1}^{2}+t_{1}^{2}}}{(q)_{s_{1}^{2}}(q) t_{t_{1}^{2}}}\right)\left(\frac{(q))_{s_{1}^{3}+t_{1}^{3}}}{(q)_{s_{1}^{3}(q)}}\right)+\left(\frac{(q) t_{t_{1}^{3}}^{4}+t_{1}^{4}}{(q)_{s_{1}^{4}}(q)_{t_{1}^{4}}}\right) \\
& =\frac{1}{(q)_{s_{1}^{2}}(q)_{s_{1}^{3}}(q)_{s_{1}^{4}}(q)_{t_{1}^{4}}}
\end{aligned}
$$

Simplifying the Identity

Lets think about the blue terms:

$$
\begin{gathered}
\frac{1}{(q)_{t_{1}^{1}}}\left[\begin{array}{c}
s_{1}^{2}+t_{1}^{2} \\
s_{1}^{2}
\end{array}\right]_{q}\left[\begin{array}{c}
s_{1}^{3}+t_{1}^{3} \\
s_{1}^{3}
\end{array}\right]_{q}\left[\begin{array}{c}
s_{1}^{4}+t_{1}^{4} \\
s_{1}^{4}
\end{array}\right]_{q} \\
\left.\left.=\left(\frac{1}{(q)}\right)\left(\frac{(q))_{s_{1}^{1}}+t_{1}^{2}}{(q)_{s_{1}^{2}}}\right) / \frac{(q))_{t_{1}^{2}}}{(q)_{s_{1}^{3}}\left(t_{1}^{3}\right.}\right)_{t_{1}^{3}}\right)\left(\frac{(q)_{s_{1}^{4}+t_{1}^{4}}}{(q)_{s_{1}^{4}}(q)_{t_{1}^{4}}}\right) \\
=\frac{1}{(q)_{s_{1}^{2}}(q)_{s_{1}^{3}}(q)_{s_{1}^{4}}(q)_{t_{1}^{4}}} \\
=\frac{1}{(q)_{m_{[1,1]}}(q)_{m_{[1,2]}}(q)_{m_{[1,3]}}(q)_{m_{[1,4]}}}
\end{gathered}
$$

Simplifying the Identity

Doing these cancellations yields the identity:

Corollary (Rimányi, Weigandt, Yong, 2016)

$$
\prod_{i=1}^{n} \frac{1}{(q)_{\mathbf{d}(i)}}=\sum_{\eta \in \mathrm{L}(\mathbf{d})} q^{r_{\mathbf{w}}(\eta)} \prod_{1 \leq i \leq j \leq n} \frac{1}{(q)_{m_{[i, j]}(\eta)}}
$$

Simplifying the Identity

Doing these cancellations yields the identity:

Corollary (Rimányi, Weigandt, Yong, 2016)

$$
\prod_{i=1}^{n} \frac{1}{(q)_{\mathbf{d}(i)}}=\sum_{\eta \in \mathrm{L}(\mathbf{d})} q^{r_{\mathbf{w}}(\eta)} \prod_{1 \leq i \leq j \leq n} \frac{1}{(q)_{m_{[i, j]}(\eta)}}
$$

which looks very similar to:

$$
\prod_{i=1}^{n} \frac{1}{(q)_{\mathbf{d}(i)}}=\sum_{\eta} q^{\operatorname{codim}_{\mathbb{C}}(\eta)} \prod_{i=1}^{N} \frac{1}{(q)_{m_{\beta_{i}}(\eta)}}
$$

A Special Sequence of Permutations

We associate permutations $w_{Q}^{(i)} \in \mathfrak{S}_{i}$ to Q as follows:

- Let $w_{Q}^{(1)}=1$ and $w_{Q}^{(2)}=12$.
- If a_{i-2} and a_{i-1} point in the same direction, append i to $w_{Q}^{(i-1)}$
- If a_{i-2} and a_{i-1} point in opposite directions, reverse $w_{Q}^{(i-1)}$ and then append i

$$
\mathbf{w}_{Q}:=\left(w_{Q}^{(1)}, \ldots, w_{Q}^{(n)}\right)
$$

A Special Sequence of Permutations

We associate permutations $w_{Q}^{(i)} \in \mathfrak{S}_{i}$ to Q as follows:

- Let $w_{Q}^{(1)}=1$ and $w_{Q}^{(2)}=12$.
- If a_{i-2} and a_{i-1} point in the same direction, append i to $w_{Q}^{(i-1)}$
- If a_{i-2} and a_{i-1} point in opposite directions, reverse $w_{Q}^{(i-1)}$ and then append i

$$
\mathbf{w}_{Q}:=\left(w_{Q}^{(1)}, \ldots, w_{Q}^{(n)}\right)
$$

Example:

- $\mathbf{w}_{Q}=(1,12,123,3214,32145,541236)$

The Geometric Meaning of $r_{w}(\eta)$

The Durfee statistic has the following geometric meaning:

Theorem (Rimányi, Weigandt, Yong, 2016)

$$
\operatorname{codim}_{\mathbb{C}}(\eta)=r_{\mathbf{w}_{Q}}(\eta)
$$

The above statement combined with the corollary implies Reineke's quantum dilogarithm identity in type A.

References I

R
S. Abeasis and A. Del Fra.

Degenerations for the representations of a quiver of type Am. Journal of Algebra, 93(2):376-412, 1985.

E G. E. Andrews.
The theory of partitions.
2. Cambridge university press, 1998.
A. S. Buch and R. Rimányi.

A formula for non-equioriented quiver orbits of type a.
arXiv preprint math/0412073, 2004.
目 M. Brion.
Representations of quivers.
2008.

References II

國 P．Gabriel．
Finite representation type is open．
In Representations of algebras，pages 132－155．Springer， 1975.
B．Gordon and L．Houten．
Notes on plane partitions．ii．
Journal of Combinatorial Theory，4（1）：81－99， 1968.
圊 B．Keller．
On cluster theory and quantum dilogarithm identities．
In Representations of algebras and related topics，EMS Ser．
Congr．Rep．，pages 85－116．Eur．Math．Soc．，Zürich， 2011.
庫 A．Knutson，E．Miller and M．Shimozono．
Four positive formulae for type A quiver polynomials． Inventiones mathematicae，166（2）：229－325， 2006.

References III

M. Reineke.

Poisson automorphisms and quiver moduli. Journal of the Institute of Mathematics of Jussieu, 9(03):653-667, 2010.
R. Rimányi.

On the cohomological Hall algebra of Dynkin quivers. arXiv:1303.3399, 2013.

Thank You!

