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Overview

This project provides an elementary explanation for a quantum
dilogarithm identity due to M. Reineke.

We use generating function techniques to establish a related
identity, which is a generalization of the Euler-Gauss identity.

This reduces to an equivalent form of Reineke’s identity in type A.
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Representations of Quivers
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Quivers

A quiver Q = (Q0,Q1) is a directed graph with

vertices: i ∈ Q0

edges: a : i → j ∈ Q1
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The Definition

A representation of Q is an assignment of a:

vector space Vi to each vertex i ∈ Q0 and

linear transformation fa : Vi → Vj to each arrow i
a−→ j ∈ Q1

dim(V ) = (dimVi )i∈Q0 is the dimension vector of V .
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The Representation Space

Fix d ∈ NQ0 . The representation space is

RepQ(d) :=
⊕

i
a−→j∈Q1

Mat(d(i),d(j)).

Let
GLQ(d) :=

∏
i∈Q0

GL(d(i)).

GLQ(d) acts on RepQ(d) by base change at each vertex.

Orbits of this action are in bijection with isomorphism classes of d
dimensional representations.
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Dynkin Quivers

A quiver is Dynkin if its underlying graph is of type ADE :
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Gabriel’s Theorem

Theorem ([Gab75])

Dynkin quivers have finitely many isomorphism classes of
indecomposable representations.

For type A, indecomposables V[i ,j] are indexed by intervals.
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Lacing Diagrams

A lacing diagram ([ADF85]) L is a graph so that:

the vertices are arranged in n columns labeled 1, 2, . . . , n

the edges between adjacent columns form a partial matching.

Idea: Lacing diagrams are a way to visually encode representations
of an An quiver.
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The Role of Lacing Diagrams in Representation Theory

When Q is a type A quiver, a lacing diagram can be interpreted as
a sequence of partial permutation matrices which form a
representation VL of Q.

1

2

3

4

[ 1 0 0 0
0 1 0 0

]
,


0 0 0
0 0 0
1 0 0
0 1 0

 ,

 1 0
0 0
0 0




See [KMS06] for the equiorientated case and [BR04] for
arbitrary orientations.
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Equivalence Classes of Lacing Diagrams

Two lacing diagrams are equivalent if one can be obtained from
the other by permuting vertices within a column.

{Equivalence Classes of Lacing Diagrams}

↕

{Isomorphism Classes of Representations of Q}
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Strands

A strand is a connected component of L.

m[i ,j](L) = |{strands starting at column i and ending at column j}|

Example: m[1,2](L) = 2
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Strands

A strand is a connected component of L.

m[i ,j](L) = |{strands starting at column i and ending at column j}|

Example: m[4,4](L) = 1
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Strands

Strands record the decomposition of VL into indecomposable
representations:

VL ∼= ⊕V
⊕m[i,j](L)
[i ,j]

Example: VL ∼= V⊕2
[1,2] ⊕ V[2,3] ⊕ V[2,4] ⊕ V[3,3] ⊕ V[4,4]
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Reineke’s Identities
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The Quantum Dilogarithm Series

E(z) =
∞∑
k=0

qk
2/2zk

(1− q)(1− q2) . . . (1− qk)
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The Quantum Algebra of a Quiver

The Quantum Algebra AQ is an algebra over Q(q1/2) with

generators:
{yd : d ∈ NQ0}

multiplication:

yd1yd2 = q
1
2
(χ(d2,d1)−χ(d1,d2))yd1+d2

The Euler form χ : NQ0 × NQ0 → Z

χ(d1,d2) =
∑
i∈Q0

d1(i)d2(i) −
∑

i
a−→j∈Q1

d1(i)d2(j)
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Reineke’s Identity

Given a representation V , we’ll write dV as a shorthand for ddim(V ).

For a Dynkin quiver, it is possible to fix a choice of ordering on the

simple representations: α1, . . . , αn

indecomposable representations: β1, . . . , βN

so that
E(ydα1

) · · ·E(ydαn
) = E(ydβ1 ) · · ·E(ydβN ) (1)

(Original proof given by [Rei10], see [Kel11] for exposition and a
sketch of the proof.)
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Reformulation

Looking at the coefficient of yd on each side, this is equivalent to
the following infinite family of identities ([Rim13]):

n∏
i=1

1

(q)d(i)
=
∑
η

qcodimC(η)
N∏
i=1

1

(q)mβi
(η)

.

where the sum is over orbits η in RepQ(d) and mβ(η) is the
multiplicity of β in V ∈ η.

Here, (q)k = (1− q) · · · (1− qk) is the q-shifted factorial.
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Some Bookkeeping

Fix a sequence of permutations w = (w (1), . . . ,w (n)), so that
w (i) ∈ Si and w (i)(i) = i .

Let
s ji (L) = m[i ,j−1](L)

and
tki (L) = m[i ,k](L) +m[i ,k+1](L) + . . .+m[i ,n](L).

Define the Durfee statistic:

rw(L) =
∑

1≤i<j≤k≤n

sk
w (k)(i)

(L)tk
w (k)(j)

(L).

The above statistics are all constant on equivalence classes of
lacing diagrams.
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Theorem (Rimányi, Weigandt, Yong, 2016)

Fix a dimension vector d = (d(1), . . . ,d(n)) and let w be as
before. Then

n∏
k=1

1

(q)d(k)
=
∑

η∈L(d)

qrw(η)
n∏

k=1

1

(q)tkk (η)

k−1∏
i=1

[
tki (η) + ski (η)

ski (η)

]
q

[j+k
k

]
q
is the q-binomial coefficient and (q)k the q-shifted

factorial.
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Generating Series for Partitions
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Generating Series

Let S be a set equipped with a weight function

wt : S → N

so that
|{s ∈ S : wt(s) = k}| <∞

for each k ∈ N.

The generating series for S is

G (S , q) =
∑
s∈S

qwt(s).
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Partitions

An integer partition is an ordered list of decreasing integers:

λ = λ1 ≥ λ2 ≥ . . . ≥ λℓ(λ) > 0

We will typically represent a partition by its Young diagram:

We weight a partition by counting the boxes in its Young diagram.
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Generating Series for Partitions

1

(q)∞
=

∞∏
k=1

1

(1− qk)
=

∞∏
k=1

(1 + qk + q2k + q3k + . . .)

q16 = q1 · 1 · q3·3 · 1 · 1 · q6 · 1 · 1 · . . .
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Notation

Let R(j , k) be the set consisting of a single rectangular
partition of size j × k .

G (R(j , k), q) =

qjk

Let P(j , k) be the set of partitions constrained to a j × k
box. (Here, we allow j , k =∞).

G (P(j , k), q) = ??
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P(∞, k): Partitions With at Most k Columns

Idea: Truncate the product

1

(q)k
=

k∏
i=1

1

(1− qi )
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P(k ,∞): Partitions With at Most k Rows

Idea: Bijection via conjugation

1

(q)k
=

k∏
i=1

1

(1− qi )
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q-Binomial Coefficients

q-Binomial Coefficient:
If x and y are q commuting (yx = qxy),

(x + y)n =
∑
i+j=n

[
i + j

i

]
q

x iy j .
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Combinatorial Interpretation of the q-Binomial Coefficient

(x + y)11 = . . .+ yyxyxyyxxyy + . . .

x

y y x

y x

y y x

yy

G (P(i , j), q) =
[
i + j

i

]
q

=
(q)i+j

(q)i (q)j
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Durfee Squares and Rectangles
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Durfee Squares

The Durfee square D(λ) is the largest j × j square partition
contained in λ.
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Durfee Squares

P(∞,∞) ←→
∪
j≥0

R(j , j)× P(j ,∞)× P(∞, j)

Euler-Gauss identity:

1

(q)∞
=

∞∑
j=0

qj
2

(q)j(q)j
(2)

See [And98] for details and related identities.
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Durfee Rectangles

D(λ,−1) D(λ, 0) D(λ, 4)

The Durfee Rectangle D(λ, r) is the largest s × (s + r)
rectangular partition contained in λ.

1

(q)∞
=

∞∑
s=0

qs(s+r)

(q)s(q)s+r
. (3)

([GH68])
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Durfee Rectangles

D(λ,−1) D(λ, 0) D(λ, 4)
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Proof of the Main Theorem
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Theorem (Rimányi, Weigandt, Yong, 2016)

Fix a dimension vector d = (d(1), . . . ,d(n)) and let w be as
before. Then

n∏
k=1

1

(q)d(k)
=
∑

η∈L(d)

qrw(η)
n∏

k=1

1

(q)tkk (η)

k−1∏
i=1

[
tki (η) + ski (η)

ski (η)

]
q

Idea: We will interpret each side as a generating series for tuples of
partitions. Giving a weight preserving bijection between these two
sets proves the identity.
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The Left Hand Side

S = P(∞,d(1))× . . .× P(∞,d(n))

G (S , q) =
n∏

i=1

G (P(∞,d(i)), q) =
n∏

i=1

1

(q)d(i)
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The Right Hand Side

T =
∪

η∈L(d)

R(η)× P(η)

G (T , q) =
∑

η∈L(d)

G (R(η), q)G (P(η), q)
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The map S → T

Let w = (1, 12, 123, 1234) and d = (8, 9, 11, 8).

λ = (λ(1), λ(2), λ(3), λ(4)) ∈ S
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λ 7→ (µ,ν)

∅
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λ(1)

s21

t11
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λ(1)

t11

s21

Anna Weigandt Partition Identities and Quiver Representations



λ(2)

t11

s21
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λ(2)

t11

s21
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λ(2)
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Anna Weigandt Partition Identities and Quiver Representations



λ(2)

t21

s21
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λ(2)

t21t22

s21
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λ(3)

t21t22

s31
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λ(3)

t31
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λ(3)

t31t32t33

s31

s32
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λ(4)

t31t32t33
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λ(4)

t31t32t33
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λ(4)

t31t32t33
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λ(4)

t41

s41
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λ(4)

t41t42t43t44

s41
s42

s43
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These Parameters are Well Defined

Lemma

There exists a unique η ∈ L(d) so that ski (η) = ski and tkj (η) = tkj
for all i , j , k.
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A Recursion

For any η,
ski (η) + tki (η) = tk−1

i (η) (4)

The parameters defined by Durfee rectangles satisfy the same
equations:

t11 t21t22

s21

t31t32t33

s31

s32

t41t42t43t44s41
s42
s43

λ 7→ (µ,ν) ∈ T (η) ⊆ T
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Connection with Reineke’s Identity
(in type A)
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Simplifying the Identity

Lets think about the blue terms:

1

(q)t11

[
s21 + t21

s21

]
q

[
s31 + t31

s31

]
q

[
s41 + t41

s41

]
q

=

(
1

(q)t11

)(
(q)s21+t21

(q)s21
(q)t21

)(
(q)s31+t31

(q)s31
(q)t31

)(
(q)s41+t41

(q)s41
(q)t41

)

=
1

(q)s21
(q)s31

(q)s41
(q)t41

=
1

(q)m[1,1]
(q)m[1,2]

(q)m[1,3]
(q)m[1,4]
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s31

]
q

[
s41 + t41

s41

]
q

=

(
1

(q)t11

)(
(q)s21+t21

(q)s21
(q)t21

)(
(q)s31+t31

(q)s31
(q)t31

)(
(q)s41+t41

(q)s41
(q)t41

)

=
1

(q)s21
(q)s31

(q)s41
(q)t41

=
1

(q)m[1,1]
(q)m[1,2]

(q)m[1,3]
(q)m[1,4]
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Simplifying the Identity

Doing these cancellations yields the identity:

Corollary (Rimányi, Weigandt, Yong, 2016)

n∏
i=1

1

(q)d(i)
=
∑

η∈L(d)

qrw(η)
∏

1≤i≤j≤n

1

(q)m[i,j](η)
.

which looks very similar to:

n∏
i=1

1

(q)d(i)
=
∑
η

qcodimC(η)
N∏
i=1

1

(q)mβi
(η)

.
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A Special Sequence of Permutations

We associate permutations w
(i)
Q ∈ Si to Q as follows:

Let w
(1)
Q = 1 and w

(2)
Q = 12.

If ai−2 and ai−1 point in the same direction, append i to

w
(i−1)
Q

If ai−2 and ai−1 point in opposite directions, reverse w
(i−1)
Q

and then append i

wQ := (w
(1)
Q , . . . ,w

(n)
Q )

Example:

1 2 3 4 5 6

a1 a2 a3 a4 a5

wQ = (1, 12, 123, 3214, 32145, 541236)
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The Geometric Meaning of rw(η)

The Durfee statistic has the following geometric meaning:

Theorem (Rimányi, Weigandt, Yong, 2016)

codimC(η) = rwQ
(η)

The above statement combined with the corollary implies Reineke’s
quantum dilogarithm identity in type A.
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