Versal deformation rings and symmetric special biserial algebras

David Meyer, Roberto C. Soto, **Daniel J. Wackwitz** University of Missouri CSU - Fullerton **University of Wisconsin - Platteville**

Conference on Geometric Methods in Representation Theory November 20, 2017

伺 ト イ ヨ ト イ ヨ ト

Let k be an algebraically closed field, G be a finite group such that char(k) divides the order of G, and M be a finitely generated kG-module.

- M has a versal deformation ring R(G, M) Mazur
- R(G, M) is universal when $\underline{End}_{kG}(M) \cong k$ Bleher-Chinburg
 - R(G, M) classified for all M belonging to a block of kG of finite representation type where <u>End_{kG}(M)</u> ≅ k
- Initial goal: Consider M with $\underline{End}_{kG}(M) \ncong k$
 - Generalized and solved for finite representation type Bleher-W

・ 同 ト ・ ヨ ト ・ ヨ ト

Generalization and goals

Let k be an algebraically closed field of arbitrary characteristic, Λ be a symmetric special biserial algebra over k, and M be a finitely generated Λ -module.

- $R(\Lambda, M)$ classified for all M when Λ of finite type Bleher-W
- Goal: Consider Λ of domestic representation type
 - Classify $R(\Lambda, M)$ for all M where $\underline{End}_{\Lambda}(M) \cong k$ (Universal)
 - Loosen restriction and classify versal deformation rings

To do this, we study an equivalent family of algebras: Brauer graph algebras. (Schroll)

くほし くほし くほし

Special biserial algebras Brauer graph algebras Versal deformation rings

Special biserial algebras

Let k be an algebraically closed field of arbitrary characteristic.

Definition

A finite dimensional k-algebra Λ is called *special biserial* if there is a quiver Q and an admissible ideal I in kQ such that Λ is Morita equivalent to kQ/I and such that kQ/I satisfies the following conditions:

- At every vertex v in Q there are at most two arrows starting at v and at most two arrows ending at v,
- For every arrow α in Q there exists at most one arrow β such that $\alpha\beta \notin I$ and at most one arrow γ such that $\gamma\alpha \notin I$.

We consider the case where our special biserial algebra is also symmetric.

Special biserial algebras Brauer graph algebras Versal deformation rings

Let k be an algebraically closed field of arbitrary characteristic.

Definition

A Brauer graph G is a finite, undirected, graph together with a cyclic ordering of the edges emanating from each vertex, i, along with a positive integer value m(i) assigned to each vertex.

m(a) = m(c) = 1, m(b) = 2

A 3 3 4

Special biserial algebras Brauer graph algebras Versal deformation rings

Brauer graph algebras

A finite dimensional k-algebra Λ is called a Brauer graph algebra if there is a related Brauer graph $G(\Lambda)$ which encodes all projective indecomposable Λ -modules. For example, if $G(\Lambda)$ is as follows:

m(a) = m(c) = 1, m(b) = 2

then the related Brauer graph algebra Λ has the following projective indecomposable modules:

Special biserial algebras Brauer graph algebras Versal deformation rings

The versal deformation ring of a module

Let \hat{C} be the category of complete local Noetherian commutative k-algebras, and $R \in Ob(\hat{C})$. Let V be a finitely generated Λ -module.

Definition

A lift of V over R is an $R \otimes_k \Lambda$ -module M which is free as an *R*-module together with a Λ -module isomorphism $\phi : k \otimes_R M \to V$.

We say V has a versal deformation ring $R(\Lambda, V)$ in \hat{C} if every isomorphism class of lifts of V over every $R \in Ob(\hat{C})$ arises from a (not necessarily unique) k-algebra homomorphism from $R(\Lambda, V)$ to R. In addition, when $R = k[\epsilon]/(\epsilon^2)$, the k-algebra homomorphism is unique.

・ロト ・得ト ・ヨト ・ヨト

Properties of $R(\Lambda, V)$

Bleher-Velez proved that every finitely generated Λ -module V has a versal deformation ring.

The versal deformation ring for V is of the form $k[[t_1, ..., t_n]]/J$ for some ideal J, where the following properties hold:

- the k dimension of Ext¹_Λ(V, V) is the minimal number of necessary variables t_i,
- the k dimension of $\operatorname{Ext}^2_{\Lambda}(V, V)$ is an upper bound on the minimal number of generators for the ideal J.

・ 同 ト ・ ヨ ト ・ ヨ ト

Imdecomposable modules for Brauer graph algebras

For a Brauer graph algebra Λ which is *m*-domestic, the stable Auslander-Reiten quiver has the following components:

- *m* components of the form $\mathbb{Z}\widetilde{A}_{p,q}$
- m components of the form $\mathbb{Z}\mathsf{A}_{\infty}/(au^p)$
- *m* components of the form $\mathbb{Z}A_{\infty}/(au^q)$
- infintely many components of the form $\mathbb{Z}\mathsf{A}_\infty/(au)$

Since Λ is symmetric, the syzygy functor Ω induces an automorphism of the AR quiver, and for any non-projective indecomposable Λ -module V, $\Omega^2(V)$ is the AR-translate of V.

The versal deformation ring of V is uniquely determined by the component and "row" of the AR quiver on which V appears.

A B M A B M

Reduction to a generalized star

Goal: Determine $R(\Lambda, V)$ for all indecomposable modules for Brauer graph algebras of domestic type.

Every Brauer graph algebra is stably equivalent (of morita type) to a Brauer graph algebra Λ with a related generalized star Brauer tree with at most 2 vertices of multiplicity greater than 1. (Kauer)

For finite type, at most one vertex has multiplicity greater than 1. For domestic type, the 2 vertices have multiplicity 2.

Stable AR quiver for algebras of domestic type

The stable Aulander-Reiten quiver for a domestic star Brauer graph algebra with n edges has the following components:

- 1 component of the form $\mathbb{Z}\tilde{A}_{n,n}$
- 2 components of the form $\mathbb{Z}A_{\infty}/(au^n)$
- infintely many components of the form $\mathbb{Z}\textit{A}_{\infty}/(\tau)$

The only indecomposable modules for which $\underline{End}_{\Lambda}(V) \cong k$ are string modules. These modules consist of:

- all modules from the component $\mathbb{Z}\widetilde{A}_{n,n}$
- *n* rows of modules from the components $\mathbb{Z}A_{\infty}/(au^n)$

くほし くほし くほし

Stable endomorphism ring is kStable endomorphism ring not k

When $\underline{End}_{\Lambda}(V) \cong k$

Theorem: Meyer-Soto-W

Let Λ be a symmetric special biserial algebra of domestic representation type and suppose V is an indecomposable Λ -module with $\underline{End}_{\Lambda}(V) \cong k$. The Universal deformation ring $R(\Lambda, V)$ is isomorphic to k, $k[t]/(t^2)$, or k[[t]].

 $R(\Lambda, V) \cong k$ occurs when $dim_k Ext^1_{\Lambda}(V, V) = 0$, and these modules arise in all three components with string modules. $R(\Lambda, V) \cong k[t]/(t^2)$ occurs when $dim_k Ext^1_{\Lambda}(V, V) = 1$, and these modules arise in the component of the form $\mathbb{Z}\tilde{A}_{n,n}$. $R(\Lambda, V) \cong k[[t]]$ occurs when $dim_k Ext^1_{\Lambda}(V, V) = 1$, and these modules arise in the components of the form $\mathbb{Z}A_{\infty}/(\tau^n)$.

・ロト ・同ト ・ヨト ・ヨト

Stable endomorphism ring is kStable endomorphism ring not k

When $\underline{End}_{\Lambda}(V) \ncong k$

Conjecture: Meyer-Soto-W

Let Λ be a symmetric special biserial algebra of domestic representation type and suppose V is an indecomposable Λ -module with $\underline{End}_{\Lambda}(V) \ncong k$.

• If V is a string module and $dim_k Ext^1_{\Lambda}(V, V) = d$, then $R(\Lambda, V) \cong k[[t_1, \dots, t_d]].$

• For any band module $B_d(\lambda)$ where $\lambda^2 \neq -1$, $dim_k Ext^1_{\Lambda}(B_d(\lambda), B_d(\lambda)) = d$ and $R(\Lambda, B_d(\lambda)) \cong k[[t_1, \dots, t_d]].$

- * 同 * * ヨ * * ヨ * - ヨ

Stable endomorphism ring is kStable endomorphism ring not k

Current Projects

Current and future problems:

- Finish the case where we have a band module $B_I(\lambda)$ where $\lambda^2 = -1$.
- Determining whether the versal deformation rings are also universal in the case that <u>End</u>_Λ(V) ≇ k.
- Look at what happens to algebras of tame representation type which are not domestic.

Stable endomorphism ring is kStable endomorphism ring not k

Thank you!

David Meyer, Roberto C. Soto, Daniel J. Wackwitz Versal deformation rings and symmetric special biserial algebras

- 4 同 🕨 - 4 目 🕨 - 4 目