Derived Tame Nakayama Algebras

José A. Vélez-Marulanda

VALDOSTA STATE UNIVERSITY

JOINT-WORK WITH

Viktor Bekkert

Universidade Federal de Minas Gerais

& Hernán Giraldo

Universidad de Antioquia

FIFTH CONFERENCE ON GEOMETRIC METHODS IN REPRESENTATION THEORY IOWA CITY, IOWA, NOVEMBER 18-20, 2017 In this talk:

- k is an algebraically closed field of arbitrary characteristic.
- Λ denotes a fixed basic connected finite-dimensional k-algebra.
- Λ-mod denotes the abelian category of finitely generated left Λmodules, and Λ-proj denotes the subcategory of Λ-mod of projective objects.
- Unless explicitly stated, all modules are finitely generated and from the left side.
- $\mathcal{D}^b(\Lambda\text{-mod})$ denotes the bounded derived category of bounded complexes whose terms are in $\Lambda\text{-mod}$, and $\mathcal{K}^b(\Lambda\text{-proj})$ denotes the category of perfect complexes over Λ .

Definition 1. Let C^{\bullet} be a complex in $\mathcal{D}^b(\Lambda \text{-mod})$. The **cohomology dimension** of C^{\bullet} is the vector

$$\mathbf{h}\text{-}\mathbf{dim}\,C^{\bullet} = (\mathbf{dim}\,\mathsf{H}^{i}(C^{\bullet}))_{i\in\mathbb{Z}^{\prime}},$$

where for all $i \in \mathbb{Z}$, dim $H^i(C^{\bullet})$ denotes the dimension vector of $H^i(C^{\bullet})$.

Definition 2 ((CH. GEISS, H. KRAUSE, 2002)). Λ is said to be **derived tame** if for every vector $\mathbf{n} = (n_i)_{i \in \mathbb{Z}}$ of natural numbers there exists a localization $R = \mathbb{k}[t]_f$ with respect to some $f \in \mathbb{k}[t]$ and a finite number of bounded complexes of R- Λ bimodules $C_1^{\bullet}, \ldots, C_k^{\bullet}$ such that each C_i^j is finitely generated free over R and (up to isomorphism) all but finitely many indecomposable objects of cohomology dimension \mathbf{n} in $\mathcal{D}^b(\Lambda$ -mod) are of the form $S \otimes_R C_i^{\bullet}$ for some $i \in \{1, \ldots, k\}$ and some simple R-module S.

Theorem 3 ((CH. GEISS, H. KRAUSE, 2002)). Derived tameness is preserved by derived equivalence.

Derived Tame Nakayama Algebras

- Every derived discrete algebra is derived tame (D. VOSSIECK, 2001).
- If Λ has finite global dimension, then Λ is derived tame if and only if its repetitive algebra $\hat{\Lambda}$ is tame (CH. GEISS, H. KRAUSE, 2002).
- If Λ is piecewise hereditary, then Λ is derived tame (CH. GEISS, 2002).

Definition 4. Assume that Λ has finite global dimension. The **Euler form** χ_{Λ} of Λ is defined on the Grothendieck group of Λ by

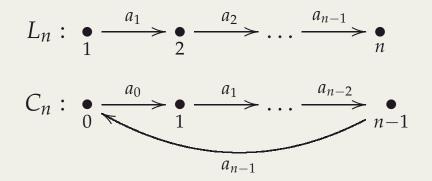
$$\chi_{\Lambda}(\operatorname{dim} M) = \sum_{i=0}^{\infty} (-1)^{i} \operatorname{dim}_{\mathbb{k}} \operatorname{Ext}_{\Lambda}^{i}(M, M)$$

for every Λ -module M.

- If Λ is a tree algebra, then Λ is derived tame if and only if χ_{Λ} is non-negative (TH. BRÜSTLE, 2001).
- If Λ is either gentle or skewed-gentle, then Λ is derived tame (V. BEKKERT, H. MERKLEN, 2003) AND (V. BEKKERT, E. N. MARCOS, H. MERKLEN, 2003).

Recall that Λ is said to be a **Nakayama algebra** if every left or right indecomposable projective Λ -module has a unique composition series.

Theorem 5. Λ is a Nakayama algebra if and only if $\Lambda = kQ/I$, where Q is one of the following quivers:



for some $n \ge 1$.

Assume that $\Lambda = kQ/I$ is a Nakayama algebra.

- If $Q = L_n$, then we say that Λ is a **line algebra**.
- If $Q = C_n$, then we say that Λ is a **cycle algebra**.

Theorem 6. (V. BEKKERT, H. GIRALDO, V-M, IN PROGRESS) Assume that Λ is a Nakayama algebra. Then Λ is derived tame if and only if one of the following conditions holds:

- (i) Λ is a line algebra whose Euler form is non-negative.
- (ii) Λ is either gentle or derived equivalent to some skewed-gentle algebra.

Definition 7. (E. ENOCHS, O. JENDA, 1995) A Λ -module V is said to be **Gorensteinprojective** if there exists an acyclic complex of projective Λ -modules

$$P^{\bullet}: \cdots \to P^{-2} \xrightarrow{\delta^{-2}} P^{-1} \xrightarrow{\delta^{-1}} P^{0} \xrightarrow{\delta^{0}} P^{1} \xrightarrow{\delta^{1}} P^{2} \to \cdots$$

such that $\operatorname{Hom}_{\Lambda}(P^{\bullet}, \Lambda)$ is also acyclic and $V = \operatorname{coker} \delta^{0}$. We denote by Λ -Gproj the category of Gorenstein-projective Λ -modules that are finitely generated, and by Λ -Gproj its stable category.

Definition 8. The **singularity category** of Λ is defined to be the Verdier quotient $\mathcal{D}^b(\Lambda\text{-mod})/\mathcal{K}^b(\Lambda\text{-proj}).$

Derived Tame Nakayama Algebras

Since Gorensteinness is preserved by derived equivalence (see e.g. (A. BELIGIAN-NIS, 2005)), and since gentle and skewed-gentle algebras are Gorenstein (see e.g. (CH. GEISS & I. REITEN, 2005) and (X. CHEN & M. LU, 2017)), by using (R.O. BUCH-WEITZ, UNPUBLISHED) we obtain the following result.

Corollary 9. If Λ is a derived tame Nakayama algebra, then Λ is Gorenstein, and consequently if Λ is a cycle algebra, then $\mathcal{D}_{sg}(\Lambda \text{-mod}) = \Lambda \text{-}\mathsf{Gproj}$.

By using the description of the singularity category of a gentle algebra in (M. KALCK, 2015), we obtain the following result.

Corollary 10. Let $\Lambda = kQ/I$ is a derived tame cycle algebra, and let $|R_{\Lambda}|$ the minimal number of relations defining I. If Λ has infinite global dimension, then there exists an equivalence of triangulated categories

 $\mathcal{D}_{sg}(\Lambda\operatorname{-mod}) \cong \mathcal{D}^{b}(\Bbbk\operatorname{-mod})/[|R_{\Lambda}|],$

where $\mathcal{D}^{b}(\Bbbk\text{-mod})/[|R_{\Lambda}|]$ denotes the **orbit category** (in the sense of (B. KELLER, 2005).

Derived Tame Nakayama Algebras

J.A. Vélez-Marulanda

The following results classifies the isomorphism class of versal deformation rings of Gorenstein-projective modules (in the sense of (F. M. BLEHER, V-M, 2012)) over derived tame Nakayama algebras.

Corollary 11. Let Λ be a derived tame Nakayama algebra, and let V be in Λ -Gproj. If V is indecomposable, then the versal deformation ring $R(\Lambda, V)$ of V is universal and isomorphic either to k or to $k[[t]]/(t^2)$.

¡GRACIAS POR SU ATENCIÓN! THANKS FOR YOUR ATTENTION! MERCI DE VOTRE ATTENTION! OBRIGADO PELA SUA ATENÇÃO! DANK FÜR IHRE AUFMERKSAMKEIT!