Singularities of Dual Varieties Associated to Exterior Representations

Emre ȘEN

Northeastern University

November 20, 2017

Outline

(1) Dual Variety

(2) Singularities of dual varieties
(3) Cusp Component

4 Node Component

Projectivization

Let V be a vector space over \mathbb{C}, V^{*} be its dual. The set of one dimensional subspaces of V is called projectivization of V and denoted by $\mathbb{P}(V)$. For each point in $\mathbb{P}(V)$ we can associate a hyperplane. After regarding those hyperplanes as points, dual projective space $\mathbb{P}(V)^{*} \cong \mathbb{P}\left(V^{*}\right)$ is obtained.

Picture of Duality

Dual Variety

Let $X \subset \mathbb{P}^{N}$ be a projective variety. Dual variety $X^{\vee} \subset\left(\mathbb{P}^{N}\right)^{*}$ is defined as the closure of the set of all tangent hyperplanes to X.

Dual Variety

Let $X \subset \mathbb{P}^{N}$ be a projective variety. Dual variety $X^{\vee} \subset\left(\mathbb{P}^{N}\right)^{*}$ is defined as the closure of the set of all tangent hyperplanes to X.

Examples

(1) Let $\langle A x, x\rangle=0$ be a plane conic, where A is 3×3 nondegenerate symmetric matrix. Then, dual curve is given by $\left\langle A^{-1} \zeta, \zeta\right\rangle$.

Dual Variety

Let $X \subset \mathbb{P}^{N}$ be a projective variety. Dual variety $X^{\vee} \subset\left(\mathbb{P}^{N}\right)^{*}$ is defined as the closure of the set of all tangent hyperplanes to X.

Examples

(1) Let $\langle A x, x\rangle=0$ be a plane conic, where A is 3×3 nondegenerate symmetric matrix. Then, dual curve is given by $\left\langle A^{-1} \zeta, \zeta\right\rangle$.
(2)

$y=x^{3}$

$4 \xi^{3}=27 \eta^{2}$

Determinant

Consider Segre embedding:

$$
\begin{gathered}
\mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3} \\
{\left[x_{0}: x_{1}\right] \times\left[y_{0}: y_{1}\right] \mapsto\left[x_{0} y_{0}: x_{0} y_{1}: x_{1} y_{0}: x_{1} y_{1}\right]}
\end{gathered}
$$

Determinant

Consider Segre embedding:

$$
\begin{gathered}
\mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3} \\
{\left[x_{0}: x_{1}\right] \times\left[y_{0}: y_{1}\right] \mapsto\left[x_{0} y_{0}: x_{0} y_{1}: x_{1} y_{0}: x_{1} y_{1}\right]}
\end{gathered}
$$

Multilinear form $f=a x_{0} y_{0}+b x_{0} y_{1}+c x_{1} y_{0}+d x_{1} y_{1}$

Determinant

Consider Segre embedding:

$$
\begin{gathered}
\mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3} \\
{\left[x_{0}: x_{1}\right] \times\left[y_{0}: y_{1}\right] \mapsto\left[x_{0} y_{0}: x_{0} y_{1}: x_{1} y_{0}: x_{1} y_{1}\right]}
\end{gathered}
$$

Multilinear form $f=a x_{0} y_{0}+b x_{0} y_{1}+c x_{1} y_{0}+d x_{1} y_{1}$

$$
\begin{array}{ll}
\frac{\partial f}{\partial x_{0}}=a y_{0}+b y_{1}=0, & \frac{\partial f}{\partial x_{1}}=c y_{0}+d y_{1}=0 \\
\frac{\partial f}{\partial y_{0}}=a x_{0}+c x_{1}=0, & \frac{\partial f}{\partial y_{1}}=b x_{0}+d x_{1}=0
\end{array}
$$

Determinant

Consider Segre embedding:

$$
\begin{gathered}
\mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3} \\
{\left[x_{0}: x_{1}\right] \times\left[y_{0}: y_{1}\right] \mapsto\left[x_{0} y_{0}: x_{0} y_{1}: x_{1} y_{0}: x_{1} y_{1}\right]}
\end{gathered}
$$

Multilinear form $f=a x_{0} y_{0}+b x_{0} y_{1}+c x_{1} y_{0}+d x_{1} y_{1}$

$$
\begin{array}{ll}
\frac{\partial f}{\partial x_{0}}=a y_{0}+b y_{1}=0, & \frac{\partial f}{\partial x_{1}}=c y_{0}+d y_{1}=0 \\
\frac{\partial f}{\partial y_{0}}=a x_{0}+c x_{1}=0, & \frac{\partial f}{\partial y_{1}}=b x_{0}+d x_{1}=0
\end{array}
$$

System of equations have a nontrivial solution if and only if

$$
a d-b c=0
$$

Hyperdeterminant

Segre Embedding

Consider the Segre embedding:
$X=\mathbb{P}^{k_{1}} \times \ldots \times \mathbb{P}^{k_{r}} \hookrightarrow \mathbb{P}^{\left(k_{1}+1\right) \ldots\left(k_{r}+1\right)-1}$
where each $\mathbb{P}^{k_{j}}$ is projectivization of $V_{j}^{*}=\mathbb{C}^{k_{j}+1}$. If X^{\vee} is a hypersurface then its defining equation is called hyperdeterminant which is a homogeneous polynomial function on $V_{1} \otimes \ldots \otimes V_{r}$.

Examples

If $r=2, k_{1}=k_{2}$ then hyperdeterminant is classical determinant.
The first nontrivial was case founded by Cayley, when $r=3$, $k_{i}=1: \Delta(\operatorname{det}|A x+B y|)$ where A, B are 2×2 matrices, x, y are variables to take discriminant.

Coordinate System

Choose a coordinate system $x^{j}=\left(x_{0}^{j}, \ldots, x_{k_{j}}^{j}\right)$ on each V_{j}^{*}, then $F \in V_{1} \otimes \ldots \otimes V_{r}$ is represented after restriction on X by a multilinear form:
$F\left(x^{1}, \ldots, x^{r}\right)=\sum_{i_{1}, \ldots, i_{r}} a_{i_{1}, \ldots, i_{r}} x_{i_{1}}^{1} \cdots x_{i_{r}}^{r}$

$$
F \in X^{\vee} \Leftrightarrow \text { system of equations } \quad F(x)=\frac{\partial F(x)}{\partial x_{i}^{j}}=0
$$

(for all i, j) has a nontrivial solution for some $x=\left(x^{1}, \ldots, x^{r}\right)$.

Remark

Hyperdeterminant of format $\left(k_{1}, \ldots, k_{r}\right)$ exists iff $k_{j} \leq \sum_{i \neq j} k_{i}$.

Dual Grassmannian

Let X be Grassmanian of k dimensional subspaces of n dimensional vector space V. Consider the Plücker embedding: $G(k, V) \hookrightarrow \mathbb{P}\left(\bigwedge^{k} V\right)$. After choosing coordinate matrix:

$$
\begin{gathered}
K=\left[\begin{array}{cccccccc}
1 & 0 & \cdots & 0 & x_{k+1}^{1} & x_{k+2}^{1} & \cdots & x_{n}^{1} \\
0 & 1 & \cdots & 0 & x_{k+1}^{2} & x_{k+2}^{2} & \cdots & x_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & x_{k+1}^{k} & x_{k+2}^{k} & \cdots & x_{n}^{k}
\end{array}\right] \\
F(A, K)= \\
\end{gathered}
$$

where $\eta_{i_{1} \ldots i_{k}}$ is the minor of K indexed by $\left(i_{1}, \ldots, i_{k}\right)$.
$F \in G(k, n)^{\vee} \Leftrightarrow$ system of equations $\quad F(x)=\frac{\partial F(x)}{\partial x_{i}^{j}}=0$
(for all i, j) has a nontrivial solution for some x.

Segre-Plücker Embedding

$X=\mathbb{P}\left(\bigwedge^{k_{1}} \mathbb{C}^{N_{1}}\right) \times \ldots \times \mathbb{P}\left(\bigwedge^{k_{r}} \mathbb{C}^{N_{r}}\right) \mapsto \mathbb{P}\left(\bigwedge^{k_{1}} \mathbb{C}^{N_{1}} \otimes \ldots \otimes \bigwedge^{k_{r}} \mathbb{C}^{N_{r}}\right)$
$N_{i} \geq 2 k_{i}$. For each component we have Plücker embedding like above. Then take the Segre embedding. Generic form becomes:

$$
F=\sum a_{I_{1} ; \ldots ; I_{r}} \eta_{I_{1}}^{1} \cdots \eta_{I_{r}}^{r}
$$

where I_{j} is the index set of $\bigwedge^{k_{j}} \mathbb{C}^{N_{j}}$ of size k_{j}. Again
$F \in X^{\vee} \Leftrightarrow$ system of equations $F(x)=\frac{\partial F(x)}{\partial x_{i}^{j}}=0$
(for all i, j) has a nontrivial solution for some x.

For the analysis of singularities the key tool is Hessian matrix.

Definition

Given form F, we define Hessian matrix at point $p \in X$ ie. matrix of double partial derivatives

$$
H(F)_{p}=\left\|\frac{\partial^{2} F}{\partial_{j^{\prime}}^{i^{\prime}} \partial_{j}^{i}}\right\|_{p}
$$

evaluated at p for all possible indices $i, i^{\prime}, j, j^{\prime}$, and $\partial_{j}^{i}=\partial x_{j}^{i}$.

Definition

The cusp component is the subvariety of X^{\vee} such that determinant of Hessian matrix vanishes. Formally:

$$
X_{\text {cusp }}:=\left\{F \mid \exists p \in X \text { s.t } \mathbb{P} T_{p} X \subset F \text { and }\left.\operatorname{det} H(F)\right|_{p}=0\right\}
$$

Definition

The node component is the subvariety of X^{\vee} which is the set of forms such that $F(p)=F(q)=0$ for two distinct points $p, q \in X$. Formally:

$$
X_{\text {node }}:=\overline{\left\{F \mid \exists p, q \in X \quad \text { such that } \quad \mathbb{P} T_{p} X, \mathbb{P} T_{q} X \subset F\right\}}
$$

Summary of Results

Representation	Cusp	Node	Jth Node
Hyperdeterminant $\mathbb{C}^{k_{1}} \otimes \ldots \otimes \mathbb{C}^{k_{r}}$	WZ	WZ	WZ
Dual Grassmannian $\bigwedge^{k} \mathbb{C}^{N}$	M,S	H,M,S	S
$\bigwedge^{k} \mathbb{C}^{N} \otimes \mathbb{C}^{M}$	S	S	S
$\bigwedge^{k_{1}} \mathbb{C}^{N_{1}} \otimes \ldots \otimes \bigwedge^{k_{r}} \mathbb{C}^{N_{r}}$	partial	S	partial

WZ: Weyman, Zelevinsky 1996
H: Holweck 2011, M: Maeda 2001
S: Sen

Problem-Cusp Type

Let's recall definition of cusp variety: points of dual variety such that determinant of Hessian vanishes. Now problem reduces to the following linear algebra problem:
What are the homogeneous polynomial factors of determinant of Hessian matrix?

Theorem

Assume that the determinant of the Hessian associated to form F, $F \in X^{\vee}$ is irreducible and X^{\vee} does not have finitely many orbits. Then $X_{\text {cusp }}$ is irreducible hypersurface in X^{\vee}.

There is a natural action of the group
$G=S L\left(\mathbb{C}^{N_{1}}\right) \times \ldots \times S L\left(\mathbb{C}^{N_{r}}\right)$ on the form.

Problem-Node Type

Analysis of the node component reduces to the following linear algebra problem:
When does there exist two invertible Hessian matrices satisfying certain conditions?

Theorem

Generic node component for $\bigwedge^{k_{1}} \mathbb{C}^{N_{1}} \otimes \ldots \otimes \bigwedge^{k_{r}} \mathbb{C}^{N_{r}}$ is always codimension one except the following 10 cases:

$$
\begin{aligned}
& \Lambda^{3} \mathbb{C}^{6}, \Lambda^{3} \mathbb{C}^{7}, \Lambda^{3} \mathbb{C}^{8} \\
& \Lambda^{2} \mathbb{C}^{4} \otimes \mathbb{C}^{2}, \Lambda^{2} \mathbb{C}^{4} \otimes \mathbb{C}^{3}, \Lambda^{2} \mathbb{C}^{4} \otimes \mathbb{C}^{4}, \Lambda^{2} \mathbb{C}^{4} \otimes \mathbb{C}^{5} \\
& \Lambda^{2} \mathbb{C}^{5} \otimes \mathbb{C}^{3}, \Lambda^{2} \mathbb{C}^{5} \otimes \mathbb{C}^{4}, \Lambda^{2} \mathbb{C}^{6} \otimes \mathbb{C}^{2}
\end{aligned}
$$

Hessian of $G(3,6)$

$\left[\begin{array}{ccccccccc}0 & 0 & 0 & 0 & a_{1} & a_{2} & 0 & b_{1} & b_{2} \\ 0 & 0 & 0 & -a_{1} & 0 & a_{3} & -b_{1} & 0 & b_{3} \\ 0 & 0 & 0 & -a_{2} & -a_{3} & 0 & -b_{2} & -b_{3} & 0\end{array}\right.$

Hessian of $G(3,6)$

$\left[\begin{array}{ccccccccc}0 & 0 & 0 & 0 & a_{1} & a_{2} & 0 & b_{1} & b_{2} \\ 0 & 0 & 0 & -a_{1} & 0 & a_{3} & -b_{1} & 0 & b_{3} \\ 0 & 0 & 0 & -a_{2} & -a_{3} & 0 & -b_{2} & -b_{3} & 0 \\ 0 & -a_{1} & -a_{2} & 0 & 0 & 0 & 0 & c_{1} & c_{2} \\ a_{1} & 0 & -a_{3} & 0 & 0 & 0 & -c_{1} & 0 & c_{3} \\ a_{2} & a_{3} & 0 & 0 & 0 & 0 & -c_{2} & -c_{3} & 0\end{array}\right.$

Hessian of $G(3,6)$

$\left[\begin{array}{ccccccccc}0 & 0 & 0 & 0 & a_{1} & a_{2} & 0 & b_{1} & b_{2} \\ 0 & 0 & 0 & -a_{1} & 0 & a_{3} & -b_{1} & 0 & b_{3} \\ 0 & 0 & 0 & -a_{2} & -a_{3} & 0 & -b_{2} & -b_{3} & 0 \\ 0 & -a_{1} & -a_{2} & 0 & 0 & 0 & 0 & c_{1} & c_{2} \\ a_{1} & 0 & -a_{3} & 0 & 0 & 0 & -c_{1} & 0 & c_{3} \\ a_{2} & a_{3} & 0 & 0 & 0 & 0 & -c_{2} & -c_{3} & 0 \\ 0 & -b_{1} & -b_{2} & 0 & -c_{1} & -c_{2} & 0 & 0 & 0 \\ b_{1} & 0 & -b_{3} & c_{1} & 0 & -c_{3} & 0 & 0 & 0 \\ b_{2} & b_{3} & 0 & c_{2} & c_{3} & 0 & 0 & 0 & 0\end{array}\right]$

Hessian for Dual Grassmannian

Hessian for $G(k, n)^{\vee}$

$$
\left[\begin{array}{ccccc}
0 & A_{12} & \cdots & \cdots & A_{1 k} \\
-A_{12} & 0 & \cdots & \cdots & A_{2 k} \\
\vdots & \vdots & \ddots & & \vdots \\
\vdots & \vdots & & 0 & A_{k-1, k} \\
-A_{1 k} & -A_{2 k} & \cdots & -A_{k-1, k} & 0
\end{array}\right]
$$

$A_{i j}$'s are skew symmetric blocks of size $(n-k) \times(n-k)$.

Hessian for $\bigwedge^{k} \mathbb{C}^{N} \otimes \mathbb{C}^{M}$

Hessian for $\bigwedge^{k} \mathbb{C}^{N} \otimes \mathbb{C}^{M}$
$\left[\begin{array}{cccccc}0 & A_{12} & \cdots & \cdots & A_{1 k} & B_{11} \\ -A_{12} & 0 & \cdots & \cdots & A_{2 k} & B_{21} \\ \vdots & \vdots & \ddots & & \vdots & \vdots \\ \vdots & \vdots & & 0 & A_{k-1, k} & B_{k-1,1} \\ -A_{1 k} & -A_{2 k} & \cdots & -A_{k-1, k} & 0 & B_{k, 1} \\ B_{11}^{t} & B_{21}^{t} & \cdots & B_{k-1,1}^{t} & B_{k, 1}^{t} & 0\end{array}\right]$
$A_{i j}$'s are skew symmetric blocks of size $(N-k) \times(N-k)$.
$B_{i j}$ are generic matrices of size $(N-k) \times(M-1)$.
${ }^{t}$ denotes transpose.

Hessian in general

Hessian in general $\bigwedge^{k_{1}} \mathbb{C}^{N_{1}} \otimes \ldots \otimes \bigwedge^{k_{r}} \mathbb{C}^{N_{r}}$

$$
\left[\begin{array}{ccccc}
H\left(\bigwedge^{k_{1}} \mathbb{C}^{N_{1}}\right) & S_{12} & \cdots & \cdots & S_{1 r} \\
S_{12}^{t} & H\left(\bigwedge^{k_{2}} \mathbb{C}^{N_{2}}\right) & \cdots & \cdots & S_{2 r}
\end{array}\right.
$$

$$
H\left(\bigwedge^{k_{r-1}} \mathbb{C}^{N_{r-1}}\right) \quad S_{r-1, r}
$$

$$
S_{1 r}^{t} \quad S_{2 r}^{t} \quad \cdots \quad S_{r-1, r}^{t} \quad H\left(\bigwedge^{k_{r}} \mathbb{C}^{N_{r}}\right)
$$

$H\left(\bigwedge^{k_{j}} \mathbb{C}^{N_{j}}\right)$ are Hessian associated to dual Grassmannian of size

$$
k_{j}\left(N_{j}-k_{j}\right) \times k_{j}\left(N_{j}-k_{j}\right) .
$$

$S_{i j}$ are generic matrices of size $k_{i}\left(N_{i}-k_{i}\right) \times k_{j}\left(N_{j}-k_{j}\right)$.

Determinant of Hessian matrix for $\bigwedge^{k} \mathbb{C}^{N} \otimes \mathbb{C}^{M}$ is irreducible, except the cases below:
$\left.\begin{array}{|c|c|c|c|}\hline \text { Representation } & N & \text { Factors } & \text { Degrees } \\ \hline \bigwedge^{2} \mathbb{C}^{N} \otimes \mathbb{C}^{2} & \begin{array}{c}\text { odd } \\ \text { even }\end{array} & p f^{3} \times U & 3\left(\frac{N}{2}-1\right)+\frac{N}{2} \\ \hline \bigwedge^{2} \mathbb{C}^{N} \otimes \mathbb{C}^{3} & \begin{array}{c}\text { odd } \\ \text { even }\end{array} & U^{2} & 2(N-1) \times U\end{array}\right] 2\left(\frac{N-2}{2}\right)+N$.

$\bigwedge^{2} \mathbb{C}^{4} \otimes \mathbb{C}^{4}$	$f \times g$	$\operatorname{deg} f=1, \operatorname{deg} g=6$
$\bigwedge^{2} \mathbb{C}^{6} \otimes \mathbb{C}^{4}$	$f \times g$	$\operatorname{deg} f=2, \operatorname{deg} g=9$
$\bigwedge^{3} \mathbb{C}^{6} \otimes \mathbb{C}^{2}$	$f^{2} \times g$	$\operatorname{deg} f=3, \operatorname{deg} g=4$
$\bigwedge^{3} \mathbb{C}^{7} \otimes \mathbb{C}^{2}$	$f \times g$	$\operatorname{deg} f=7, \operatorname{deg} g=6$
$\bigwedge^{3} \mathbb{C}^{6} \otimes \mathbb{C}^{3}$	$f \times g$	$\operatorname{deg} f=8, \operatorname{deg} g=3$

Theorem

Assume that the determinant of the Hessian associated to form F, $F \in X^{\vee}$ is irreducible and X^{\vee} does not have finitely many orbits. Then $X_{\text {cusp }}$ is irreducible hypersurface in X^{\vee}.

Theorem

$X_{\text {cusp }}$ is of codimension 2 for the format $\bigwedge^{k} \mathbb{C}^{N} \otimes \mathbb{C}^{k(N-k)+1}$.

Partial Results

Theorem

Assume that the format is not boundary.
The determinant of Hessian matrix is irreducible except the following classes:

$$
\begin{aligned}
& \Lambda^{2} \mathbb{C}^{N_{1}} \otimes \mathbb{C}^{N_{2}} \otimes \mathbb{C}^{N_{3}} \\
& \Lambda^{3} \mathbb{C}^{N_{1}} \otimes \mathbb{C}^{N_{2}} \otimes \mathbb{C}^{N_{3}}
\end{aligned}
$$

Generic Node Type For $\bigwedge^{k_{1}} \mathbb{C}^{N_{1}} \otimes \ldots \otimes \bigwedge^{k_{r}} \mathbb{C}^{N_{r}}$

Plainly, we analyze forms which are tangent to the variety at two distinct points. Generic form is:
$F=\sum a_{I_{1} ; \ldots ; I_{r}} \eta_{I_{1}}^{(1)} \cdots \eta_{I_{r}}^{(r)}$, where I_{j} is the index set of $\bigwedge^{k_{j}} \mathbb{C}^{N_{j}}$ of size k_{j} and $I_{j} \subseteq\left[1, N_{j}\right]$. We define:

$$
\begin{aligned}
& I_{j}^{\text {first }}=\left(1, \ldots, k_{j}\right) \\
& I_{j}^{\text {last }}=\left(N_{j}-k_{j}+1, \ldots, N_{j}\right) \\
& I^{\text {first }}=\left(I_{1}^{\text {first }} ; \ldots ; I_{r}^{\text {first }}\right) \\
& I^{\text {last }}=\left(I_{1}^{\text {last }} ; \ldots ; I_{r}^{\text {last }}\right)
\end{aligned}
$$

There is a natural action of the group $G=S L\left(\mathbb{C}^{N_{1}}\right) \times \ldots \times S L\left(\mathbb{C}^{N_{r}}\right)$ on the form.

$$
\begin{array}{r}
S:=\left\{F \mid a_{I_{1} ; \ldots ; I_{r}}=0 \quad\right. \text { whenever } \\
\left|I^{\text {first }} \cap\left(I_{1} ; \ldots ; I_{r}\right)\right| \geq k_{1}+\ldots+k_{r}-1 \\
\text { or } \left.\left|I^{\text {last }} \cap\left(I_{1} ; \ldots ; I_{r}\right)\right| \geq k_{1}+\ldots+k_{r}-1\right\}
\end{array}
$$

$$
X_{\text {node }}:=\overline{G \bullet S}
$$

Theorem

Generic node component for $\bigwedge^{k_{1}} \mathbb{C}^{N_{1}} \otimes \ldots \otimes \bigwedge^{k_{r}} \mathbb{C}^{N_{r}}$ is always codimension one except:

$$
\begin{aligned}
& \Lambda^{3} \mathbb{C}^{6}, \Lambda^{3} \mathbb{C}^{7}, \Lambda^{3} \mathbb{C}^{8} \\
& \Lambda^{2} \mathbb{C}^{4} \otimes \mathbb{C}^{2}, \Lambda^{2} \mathbb{C}^{4} \otimes \mathbb{C}^{3}, \Lambda^{2} \mathbb{C}^{4} \otimes \mathbb{C}^{4}, \Lambda^{2} \mathbb{C}^{4} \otimes \mathbb{C}^{5} \\
& \Lambda^{2} \mathbb{C}^{5} \otimes \mathbb{C}^{3}, \Lambda^{2} \mathbb{C}^{5} \otimes \mathbb{C}^{4}, \Lambda^{2} \mathbb{C}^{6} \otimes \mathbb{C}^{2}
\end{aligned}
$$

Thank You!

戋 Gelfand，I．M．，Kapranov，M．，Zelevinsky，A．（1994）． Discriminants，resultants，and multidimensional determinants． Birkhäuser

R Weyman，J．，Zelevinsky，A．（1996）．Singularities of hyperdeterminants．In Annales de l＇institut Fourier（Vol．46， No．3，pp．591－644）．

國 Holweck，F．（2011）．Singularities of duals of Grassmannians． Journal of Algebra，337（1），369－384．

國 Maeda，T．（2001）．Determinantal equations and singular loci of duals of Grassmannians．Ryukyu mathematical journal，14， 17－40．

