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Quiver Grass. from Non-Comm. Recursions

Polynomial Kontsevich Automorphisms

Definition

k – field of characteristic zero

K = k(X ,Y ) – skew-field of formal rational expressions in
non-commuting variables X and Y
(Intuitively: W ∈ K is invertible if and only if its commutative
specialization is non-zero)

P(z) ∈ k[z ] – any polynomial

FP : K→ K – algebra automorphism defined by

FP :

{
X 7→ XYX−1

Y 7→ P(Y )X−1
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Quiver Grass. from Non-Comm. Recursions

Polynomial Kontsevich Automorphisms

Setup

Let P1,P2 ∈ k[z ] be monic polynomials with Pi (0) = 1, say

P1(z) = p1,0 + p1,1z + · · ·+ p1,d1−1z
d1−1 + p1,d1z

d1

P2(z) = p2,0 + p2,1z + · · ·+ p2,d2−1z
d2−1 + p2,d2z

d2

with p1,0 = p1,d1 = p2,0 = p2,d2 = 1.

Take p1,i = 0 = p2,j for i , j < 0, i > d1, j > d2.

Set A+ = Z≥0[p1,i , p2,j : 0 < i < d1, 0 < j < d2] and call this the
pseudo-positive semiring associated to P1 and P2.

For k ∈ Z, define

Pk(z) =


zd2P2(z−1) if k ≡ 0 mod 4

P1(z) if k ≡ 1 mod 4

P2(z) if k ≡ 2 mod 4

zd1P1(z−1) if k ≡ 3 mod 4
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Quiver Grass. from Non-Comm. Recursions

Polynomial Kontsevich Automorphisms

Main Theorem

Theorem (R. 2017)

For k ≥ 1, the elements

Xk := FP1FP2 · · ·FPk
(X ) and Yk := FP1FP2 · · ·FPk

(Y )

are pseudo-positive non-commutative Laurent polynomials in X and Y ,
i.e. are contained in A+〈X±1,Y±1〉 ⊂ K.

Prior results:

Usnich 2009: Laurentness when Pk(z) = 1 + z2

Di Francesco-Kedem 2009: Laurentness and positivity when
P1(z) = 1 + zd1 and P2(z) = 1 + zd2 with d1d2 = 4
Usnich 2010: Laurentness when Pk(z) is independent of k
Berenstein-Retakh 2010: Laurentness when P1(z) = 1 + zd1 and
P2(z) = 1 + zd2

Lee-Schiffler 2011: Laurentness and positivity when Pk(z) = 1 + zd

R. 2012: Laurentness and positivity when P1(z) = 1 + zd1 and
P2(z) = 1 + zd2
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Quiver Grass. from Non-Comm. Recursions

Proof - Graded Compatible Pairs

Definition

For a = (a1, a2) ∈ Z2
≥0 with a 6= (0, 0), write D = Da for the maximal

Dyck path in the lattice rectangle [0, a1]× [0, a2].
E = {1, 2, . . . , a1 + a2} – set of edges of D
H – set of horizontal edges of D
V – set of vertical edges of D
ee ′ – subpath of D beginning with e and ending with e ′

Definition

An edge grading ω : E → Z is compatible if for every h ∈ H and v ∈ V
with h < v there exists e ∈ hv such that one of the following holds:

e 6= v and |he ∩ V | =
∑

h′∈he∩H
ω(h′)

or
e 6= h and |ev ∩ H| =

∑
v ′∈ev∩V

ω(v ′).
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Quiver Grass. from Non-Comm. Recursions

Proof - Graded Compatible Pairs

Non-Commutative Weights

For ω : E → Z, define a non-commutative weight wtω(e) ∈ K
associated to each edge e of D as follows:

wtω(e) =

{
p1,ω(e)Y

ω(e)X−1 if e ∈ H

p2,d2−ω(e)X
ω(e)+1Y−1X−1 if e ∈ V

Define YD =
∑

ω compatible

YD(ω) for YD(ω) = wtω(1)wtω(2) · · ·wtω(a1 + a2)

Set a0 = (0, 1), a1 = (−1, 0), a2 = (0,−1), a3 = (1, 0) and define
ak ∈ Z2

≥0 for k ∈ Z \ {0, 1, 2, 3} recursively by

ak−1 + ak+1 =

{
d2ak if k is odd

d1ak if k is even

Theorem

For k ≥ 1, Yk = YDak
.
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Important Consequence

Rank Two Valued Quiver Grassmannians

Theorem (R. 2017)

The number of points in the quiver Grassmannian Gre1,e2(Pk) is given by

|Gre1,e2(Pk)| =
∑

ω:E→Z
compatible

qγω , where

ω(H) ⊂ {0, d1} and ω(V ) ⊂ {0, d2}
|supp(ω|V )| = e2 and |supp(ω|H)| = ak,1 − e1

with γω =
∑
e<e′

γω(e, e ′) for

γω(e, e ′) =


−d1d2 if e ∈ supp(ω|H) and e ′ ∈ supp(ω|V )

d1 if e ∈ supp(ω|H) and e ′ ∈ H \ supp(ω|H)

d2 if e ∈ V \ supp(ω|V ) and e ′ ∈ supp(ω|V )

0 otherwise

D. Rupel (ND) Quiver Grass. from Non-Comm. Recursions November 20, 2017 7 / 12



Quiver Grass. from Non-Comm. Recursions

Important Consequence

Rank Two Valued Quiver Grassmannians

Theorem (R. 2017)

The number of points in the quiver Grassmannian Gre1,e2(Pk) is given by

|Gre1,e2(Pk)| =
∑

ω:E→Z
compatible

qγω , where

ω(H) ⊂ {0, d1} and ω(V ) ⊂ {0, d2}
|supp(ω|V )| = e2 and |supp(ω|H)| = ak,1 − e1

with γω =
∑
e<e′

γω(e, e ′) for

γω(e, e ′) =


−d1d2 if e ∈ supp(ω|H) and e ′ ∈ supp(ω|V )

d1 if e ∈ supp(ω|H) and e ′ ∈ H \ supp(ω|H)

d2 if e ∈ V \ supp(ω|V ) and e ′ ∈ supp(ω|V )

0 otherwise

D. Rupel (ND) Quiver Grass. from Non-Comm. Recursions November 20, 2017 7 / 12



Quiver Grass. from Non-Comm. Recursions

Important Consequence

Rank Two Valued Quiver Grassmannians

Theorem (R. 2017)

The number of points in the quiver Grassmannian Gre1,e2(Pk) is given by

|Gre1,e2(Pk)| =
∑

ω:E→Z
compatible

qγω , where

ω(H) ⊂ {0, d1} and ω(V ) ⊂ {0, d2}
|supp(ω|V )| = e2 and |supp(ω|H)| = ak,1 − e1

with γω =
∑
e<e′

γω(e, e ′) for

γω(e, e ′) =


−d1d2 if e ∈ supp(ω|H) and e ′ ∈ supp(ω|V )

d1 if e ∈ supp(ω|H) and e ′ ∈ H \ supp(ω|H)

d2 if e ∈ V \ supp(ω|V ) and e ′ ∈ supp(ω|V )

0 otherwise

D. Rupel (ND) Quiver Grass. from Non-Comm. Recursions November 20, 2017 7 / 12



Quiver Grass. from Non-Comm. Recursions

Important Consequence

Rank Two Valued Quiver Grassmannians

Theorem (R. 2017)

The number of points in the quiver Grassmannian Gre1,e2(Pk) is given by

|Gre1,e2(Pk)| =
∑

ω:E→Z
compatible

qγω , where

ω(H) ⊂ {0, d1} and ω(V ) ⊂ {0, d2}
|supp(ω|V )| = e2 and |supp(ω|H)| = ak,1 − e1

with γω =
∑
e<e′

γω(e, e ′) for

γω(e, e ′) =


−d1d2 if e ∈ supp(ω|H) and e ′ ∈ supp(ω|V )

d1 if e ∈ supp(ω|H) and e ′ ∈ H \ supp(ω|H)

d2 if e ∈ V \ supp(ω|V ) and e ′ ∈ supp(ω|V )

0 otherwise

D. Rupel (ND) Quiver Grass. from Non-Comm. Recursions November 20, 2017 7 / 12



Quiver Grass. from Non-Comm. Recursions

Important Consequence

Rank Two Valued Quiver Grassmannians

Theorem (R. 2017)

The number of points in the quiver Grassmannian Gre1,e2(Pk) is given by

|Gre1,e2(Pk)| =
∑

ω:E→Z
compatible

qγω , where

ω(H) ⊂ {0, d1} and ω(V ) ⊂ {0, d2}
|supp(ω|V )| = e2 and |supp(ω|H)| = ak,1 − e1

with γω =
∑
e<e′

γω(e, e ′) for

γω(e, e ′) =


−d1d2 if e ∈ supp(ω|H) and e ′ ∈ supp(ω|V )

d1 if e ∈ supp(ω|H) and e ′ ∈ H \ supp(ω|H)

d2 if e ∈ V \ supp(ω|V ) and e ′ ∈ supp(ω|V )

0 otherwise

D. Rupel (ND) Quiver Grass. from Non-Comm. Recursions November 20, 2017 7 / 12



Quiver Grass. from Non-Comm. Recursions

Important Consequence

Rank Two Valued Quiver Grassmannians

Theorem (R. 2017)

The number of points in the quiver Grassmannian Gre1,e2(Pk) is given by

|Gre1,e2(Pk)| =
∑

ω:E→Z
compatible

qγω , where

ω(H) ⊂ {0, d1} and ω(V ) ⊂ {0, d2}
|supp(ω|V )| = e2 and |supp(ω|H)| = ak,1 − e1

with γω =
∑
e<e′

γω(e, e ′) for

γω(e, e ′) =


−d1d2 if e ∈ supp(ω|H) and e ′ ∈ supp(ω|V )

d1 if e ∈ supp(ω|H) and e ′ ∈ H \ supp(ω|H)

d2 if e ∈ V \ supp(ω|V ) and e ′ ∈ supp(ω|V )

0 otherwise

D. Rupel (ND) Quiver Grass. from Non-Comm. Recursions November 20, 2017 7 / 12



Quiver Grass. from Non-Comm. Recursions

Rank Two Valued Quiver Grassmannians

Big Question

Question: Is there a decomposition of Gre1,e2(Pk) into affine cells
which explains the existence of these counting polynomials?

If so, the cells should be labeled by compatible gradings ω with the
dimension of the cell corresponding to ω given by γω.

Theorem (R.-Weist, coming soon)

Each quiver Grassmannian Gre1,e2(Pk) has such a decomposition into
affine cells.

D. Rupel (ND) Quiver Grass. from Non-Comm. Recursions November 20, 2017 8 / 12



Quiver Grass. from Non-Comm. Recursions

Rank Two Valued Quiver Grassmannians

Big Question

Question: Is there a decomposition of Gre1,e2(Pk) into affine cells
which explains the existence of these counting polynomials?

If so, the cells should be labeled by compatible gradings ω with the
dimension of the cell corresponding to ω given by γω.

Theorem (R.-Weist, coming soon)

Each quiver Grassmannian Gre1,e2(Pk) has such a decomposition into
affine cells.

D. Rupel (ND) Quiver Grass. from Non-Comm. Recursions November 20, 2017 8 / 12



Quiver Grass. from Non-Comm. Recursions

Rank Two Valued Quiver Grassmannians

Big Question

Question: Is there a decomposition of Gre1,e2(Pk) into affine cells
which explains the existence of these counting polynomials?

If so, the cells should be labeled by compatible gradings ω with the
dimension of the cell corresponding to ω given by γω.

Theorem (R.-Weist, coming soon)

Each quiver Grassmannian Gre1,e2(Pk) has such a decomposition into
affine cells.

D. Rupel (ND) Quiver Grass. from Non-Comm. Recursions November 20, 2017 8 / 12



Quiver Grass. from Non-Comm. Recursions

Rank Two Valued Quiver Grassmannians

Quiver Schubert calculus?

Question: Is there a decomposition of Gre1,e2(Pk) into affine cells
which explains the existence of these counting polynomials?

If so, the cells should be labeled by compatible gradings ω with the
dimension of the cell corresponding to ω given by γω.

Theorem (R.-Weist, coming soon)

Each quiver Grassmannian Gre1,e2(Pk) has such a decomposition into
affine cells.

Schubert-like conditions cutting out these cells?
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If so, the cells should be labeled by compatible gradings ω with the
dimension of the cell corresponding to ω given by γω.
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Quiver Schubert calculus?

Question: Is there a decomposition of Gre1,e2(Pk) into affine cells
which explains the existence of these counting polynomials?

If so, the cells should be labeled by compatible gradings ω with the
dimension of the cell corresponding to ω given by γω.

Theorem (R.-Weist, coming soon)

Each quiver Grassmannian Gre1,e2(Pk) has such a decomposition into
affine cells.

Schubert-like conditions cutting out these cells?

Combinatorial description of closures of cells?

Intersection theory?
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End

Thank You

Thank you!
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