# On Kontsevich Automorphisms and Quiver Grassmannians 

Dylan Rupel

University of Notre Dame
November 20, 2017

Conference on Geometric Methods in Representation Theory University of lowa

- $\mathbb{k}$ - field of characteristic zero
- Definition
- $\mathbb{k}$ - field of characteristic zero
- $\mathbb{K}=\mathbb{k}(X, Y)$ - skew-field of formal rational expressions in non-commuting variables $X$ and $Y$
- $\mathbb{k}$ - field of characteristic zero
- $\mathbb{K}=\mathbb{k}(X, Y)$ - skew-field of formal rational expressions in non-commuting variables $X$ and $Y$ (Intuitively: $W \in \mathbb{K}$ is invertible if and only if its commutative specialization is non-zero)
- $\mathbb{k}$ - field of characteristic zero
- $\mathbb{K}=\mathbb{k}(X, Y)$ - skew-field of formal rational expressions in non-commuting variables $X$ and $Y$ (Intuitively: $W \in \mathbb{K}$ is invertible if and only if its commutative specialization is non-zero)
- $P(z) \in \mathbb{k}[z]$ - any polynomial


## -Definition

- $\mathbb{k}$ - field of characteristic zero
- $\mathbb{K}=\mathbb{k}(X, Y)$ - skew-field of formal rational expressions in non-commuting variables $X$ and $Y$ (Intuitively: $W \in \mathbb{K}$ is invertible if and only if its commutative specialization is non-zero)
- $P(z) \in \mathbb{k}[z]$ - any polynomial
- $F_{P}: \mathbb{K} \rightarrow \mathbb{K}$ - algebra automorphism defined by

$$
F_{P}:\left\{\begin{array}{l}
X \mapsto X Y X^{-1} \\
Y \mapsto P(Y) X^{-1}
\end{array}\right.
$$

## -Setup

- Let $P_{1}, P_{2} \in \mathbb{k}[z]$ be monic polynomials with $P_{i}(0)=1$, say

$$
\begin{aligned}
& P_{1}(z)=p_{1,0}+p_{1,1} z+\cdots+p_{1, d_{1}-1} z^{d_{1}-1}+p_{1, d_{1}} z^{d_{1}} \\
& P_{2}(z)=p_{2,0}+p_{2,1} z+\cdots+p_{2, d_{2}-1} z^{d_{2}-1}+p_{2, d_{2}} z^{d_{2}}
\end{aligned}
$$

with $p_{1,0}=p_{1, d_{1}}=p_{2,0}=p_{2, d_{2}}=1$.

## -Setup

- Let $P_{1}, P_{2} \in \mathbb{k}[z]$ be monic polynomials with $P_{i}(0)=1$, say

$$
\begin{aligned}
& P_{1}(z)=p_{1,0}+p_{1,1} z+\cdots+p_{1, d_{1}-1} z^{d_{1}-1}+p_{1, d_{1}} z^{d_{1}} \\
& P_{2}(z)=p_{2,0}+p_{2,1} z+\cdots+p_{2, d_{2}-1} z^{d_{2}-1}+p_{2, d_{2}} z^{d_{2}}
\end{aligned}
$$

with $p_{1,0}=p_{1, d_{1}}=p_{2,0}=p_{2, d_{2}}=1$.

- Take $p_{1, i}=0=p_{2, j}$ for $i, j<0, i>d_{1}, j>d_{2}$.
- Let $P_{1}, P_{2} \in \mathbb{k}[z]$ be monic polynomials with $P_{i}(0)=1$, say

$$
\begin{aligned}
& P_{1}(z)=p_{1,0}+p_{1,1} z+\cdots+p_{1, d_{1}-1} z^{d_{1}-1}+p_{1, d_{1}} z^{d_{1}} \\
& P_{2}(z)=p_{2,0}+p_{2,1} z+\cdots+p_{2, d_{2}-1} z^{d_{2}-1}+p_{2, d_{2}} z^{d_{2}}
\end{aligned}
$$

with $p_{1,0}=p_{1, d_{1}}=p_{2,0}=p_{2, d_{2}}=1$.

- Take $p_{1, i}=0=p_{2, j}$ for $i, j<0, i>d_{1}, j>d_{2}$.
- Set $\mathbb{A}_{+}=\mathbb{Z}_{\geq 0}\left[p_{1, i}, p_{2, j}: 0<i<d_{1}, 0<j<d_{2}\right]$ and call this the pseudo-positive semiring associated to $P_{1}$ and $P_{2}$.
- Let $P_{1}, P_{2} \in \mathbb{k}[z]$ be monic polynomials with $P_{i}(0)=1$, say

$$
\begin{aligned}
& P_{1}(z)=p_{1,0}+p_{1,1} z+\cdots+p_{1, d_{1}-1} z^{d_{1}-1}+p_{1, d_{1}} z^{d_{1}} \\
& P_{2}(z)=p_{2,0}+p_{2,1} z+\cdots+p_{2, d_{2}-1} z^{d_{2}-1}+p_{2, d_{2}} z^{d_{2}}
\end{aligned}
$$

with $p_{1,0}=p_{1, d_{1}}=p_{2,0}=p_{2, d_{2}}=1$.

- Take $p_{1, i}=0=p_{2, j}$ for $i, j<0, i>d_{1}, j>d_{2}$.
- Set $\mathbb{A}_{+}=\mathbb{Z}_{\geq 0}\left[p_{1, i}, p_{2, j}: 0<i<d_{1}, 0<j<d_{2}\right]$ and call this the pseudo-positive semiring associated to $P_{1}$ and $P_{2}$.
- For $k \in \mathbb{Z}$, define

$$
P_{k}(z)= \begin{cases}z^{d_{2}} P_{2}\left(z^{-1}\right) & \text { if } k \equiv 0 \bmod 4 \\ P_{1}(z) & \text { if } k \equiv 1 \bmod 4 \\ P_{2}(z) & \text { if } k \equiv 2 \bmod 4 \\ z^{d_{1}} P_{1}\left(z^{-1}\right) & \text { if } k \equiv 3 \bmod 4\end{cases}
$$

## Theorem (R. 2017)

For $k \geq 1$, the elements

$$
X_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(X) \quad \text { and } \quad Y_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(Y)
$$

are pseudo-positive non-commutative Laurent polynomials in $X$ and $Y$, i.e. are contained in $\mathbb{A}_{+}\left\langle X^{ \pm 1}, Y^{ \pm 1}\right\rangle \subset \mathbb{K}$.

## Theorem (R. 2017)

For $k \geq 1$, the elements

$$
X_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(X) \quad \text { and } \quad Y_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(Y)
$$

are pseudo-positive non-commutative Laurent polynomials in $X$ and $Y$, i.e. are contained in $\mathbb{A}_{+}\left\langle X^{ \pm 1}, Y^{ \pm 1}\right\rangle \subset \mathbb{K}$.

Prior results:

## Theorem (R. 2017)

For $k \geq 1$, the elements

$$
X_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(X) \quad \text { and } \quad Y_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(Y)
$$

are pseudo-positive non-commutative Laurent polynomials in $X$ and $Y$, i.e. are contained in $\mathbb{A}_{+}\left\langle X^{ \pm 1}, Y^{ \pm 1}\right\rangle \subset \mathbb{K}$.

Prior results:

- Usnich 2009: Laurentness when $P_{k}(z)=1+z^{2}$
-Main Theorem


## Theorem (R. 2017)

For $k \geq 1$, the elements

$$
X_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(X) \quad \text { and } \quad Y_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(Y)
$$

are pseudo-positive non-commutative Laurent polynomials in $X$ and $Y$, i.e. are contained in $\mathbb{A}_{+}\left\langle X^{ \pm 1}, Y^{ \pm 1}\right\rangle \subset \mathbb{K}$.

Prior results:

- Usnich 2009: Laurentness when $P_{k}(z)=1+z^{2}$
- Di Francesco-Kedem 2009: Laurentness and positivity when $P_{1}(z)=1+z^{d_{1}}$ and $P_{2}(z)=1+z^{d_{2}}$ with $d_{1} d_{2}=4$


## Theorem (R. 2017)

For $k \geq 1$, the elements

$$
X_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(X) \quad \text { and } \quad Y_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(Y)
$$

are pseudo-positive non-commutative Laurent polynomials in $X$ and $Y$, i.e. are contained in $\mathbb{A}_{+}\left\langle X^{ \pm 1}, Y^{ \pm 1}\right\rangle \subset \mathbb{K}$.

Prior results:

- Usnich 2009: Laurentness when $P_{k}(z)=1+z^{2}$
- Di Francesco-Kedem 2009: Laurentness and positivity when $P_{1}(z)=1+z^{d_{1}}$ and $P_{2}(z)=1+z^{d_{2}}$ with $d_{1} d_{2}=4$
- Usnich 2010: Laurentness when $P_{k}(z)$ is independent of $k$


## Theorem (R. 2017)

For $k \geq 1$, the elements

$$
X_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(X) \quad \text { and } \quad Y_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(Y)
$$

are pseudo-positive non-commutative Laurent polynomials in $X$ and $Y$, i.e. are contained in $\mathbb{A}_{+}\left\langle X^{ \pm 1}, Y^{ \pm 1}\right\rangle \subset \mathbb{K}$.

Prior results:

- Usnich 2009: Laurentness when $P_{k}(z)=1+z^{2}$
- Di Francesco-Kedem 2009: Laurentness and positivity when $P_{1}(z)=1+z^{d_{1}}$ and $P_{2}(z)=1+z^{d_{2}}$ with $d_{1} d_{2}=4$
- Usnich 2010: Laurentness when $P_{k}(z)$ is independent of $k$
- Berenstein-Retakh 2010: Laurentness when $P_{1}(z)=1+z^{d_{1}}$ and $P_{2}(z)=1+z^{d_{2}}$


## Theorem (R. 2017)

For $k \geq 1$, the elements

$$
X_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(X) \quad \text { and } \quad Y_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(Y)
$$

are pseudo-positive non-commutative Laurent polynomials in $X$ and $Y$, i.e. are contained in $\mathbb{A}_{+}\left\langle X^{ \pm 1}, Y^{ \pm 1}\right\rangle \subset \mathbb{K}$.

Prior results:

- Usnich 2009: Laurentness when $P_{k}(z)=1+z^{2}$
- Di Francesco-Kedem 2009: Laurentness and positivity when $P_{1}(z)=1+z^{d_{1}}$ and $P_{2}(z)=1+z^{d_{2}}$ with $d_{1} d_{2}=4$
- Usnich 2010: Laurentness when $P_{k}(z)$ is independent of $k$
- Berenstein-Retakh 2010: Laurentness when $P_{1}(z)=1+z^{d_{1}}$ and $P_{2}(z)=1+z^{d_{2}}$
- Lee-Schiffler 2011: Laurentness and positivity when $P_{k}(z)=1+z^{d}$


## Theorem (R. 2017)

For $k \geq 1$, the elements

$$
X_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(X) \quad \text { and } \quad Y_{k}:=F_{P_{1}} F_{P_{2}} \cdots F_{P_{k}}(Y)
$$

are pseudo-positive non-commutative Laurent polynomials in $X$ and $Y$, i.e. are contained in $\mathbb{A}_{+}\left\langle X^{ \pm 1}, Y^{ \pm 1}\right\rangle \subset \mathbb{K}$.

Prior results:

- Usnich 2009: Laurentness when $P_{k}(z)=1+z^{2}$
- Di Francesco-Kedem 2009: Laurentness and positivity when $P_{1}(z)=1+z^{d_{1}}$ and $P_{2}(z)=1+z^{d_{2}}$ with $d_{1} d_{2}=4$
- Usnich 2010: Laurentness when $P_{k}(z)$ is independent of $k$
- Berenstein-Retakh 2010: Laurentness when $P_{1}(z)=1+z^{d_{1}}$ and $P_{2}(z)=1+z^{d_{2}}$
- Lee-Schiffler 2011: Laurentness and positivity when $P_{k}(z)=1+z^{d}$
- R. 2012: Laurentness and positivity when $P_{1}(z)=1+z^{d_{1}}$ and $P_{2}(z)=1+z^{d_{2}}$
- For $\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$ with $\mathbf{a} \neq(0,0)$, write $D=D_{\mathbf{a}}$ for the maximal Dyck path in the lattice rectangle $\left[0, a_{1}\right] \times\left[0, a_{2}\right]$.
- For $\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$ with $\mathbf{a} \neq(0,0)$, write $D=D_{\mathbf{a}}$ for the maximal Dyck path in the lattice rectangle $\left[0, a_{1}\right] \times\left[0, a_{2}\right]$.
- $E=\left\{1,2, \ldots, a_{1}+a_{2}\right\}-$ set of edges of $D$


## -Definition

- For $\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$ with $\mathbf{a} \neq(0,0)$, write $D=D_{\mathbf{a}}$ for the maximal Dyck path in the lattice rectangle $\left[0, a_{1}\right] \times\left[0, a_{2}\right]$.
- $E=\left\{1,2, \ldots, a_{1}+a_{2}\right\}-$ set of edges of $D$
- $H$ - set of horizontal edges of $D$


## -Definition

- For $\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$ with $\mathbf{a} \neq(0,0)$, write $D=D_{\mathbf{a}}$ for the maximal Dyck path in the lattice rectangle $\left[0, a_{1}\right] \times\left[0, a_{2}\right]$.
- $E=\left\{1,2, \ldots, a_{1}+a_{2}\right\}$ - set of edges of $D$
- $H$ - set of horizontal edges of $D$
- $V$ - set of vertical edges of $D$


## -Definition

- For $\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$ with $\mathbf{a} \neq(0,0)$, write $D=D_{\mathbf{a}}$ for the maximal Dyck path in the lattice rectangle $\left[0, a_{1}\right] \times\left[0, a_{2}\right]$.
- $E=\left\{1,2, \ldots, a_{1}+a_{2}\right\}-$ set of edges of $D$
- $H$ - set of horizontal edges of $D$
- $V$ - set of vertical edges of $D$
- ee $e^{\prime}$ - subpath of $D$ beginning with $e$ and ending with $e^{\prime}$


## -Definition

- For $\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$ with $\mathbf{a} \neq(0,0)$, write $D=D_{\mathbf{a}}$ for the maximal Dyck path in the lattice rectangle $\left[0, a_{1}\right] \times\left[0, a_{2}\right]$.
- $E=\left\{1,2, \ldots, a_{1}+a_{2}\right\}-$ set of edges of $D$
- $H$ - set of horizontal edges of $D$
- $V$ - set of vertical edges of $D$
- $e e^{\prime}$ - subpath of $D$ beginning with $e$ and ending with $e^{\prime}$


## Definition

An edge grading $\omega: E \rightarrow \mathbb{Z}$ is compatible if

## -Definition

- For $\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$ with $\mathbf{a} \neq(0,0)$, write $D=D_{\mathbf{a}}$ for the maximal Dyck path in the lattice rectangle $\left[0, a_{1}\right] \times\left[0, a_{2}\right]$.
- $E=\left\{1,2, \ldots, a_{1}+a_{2}\right\}-$ set of edges of $D$
- $H$ - set of horizontal edges of $D$
- $V$ - set of vertical edges of $D$
- ee $e^{\prime}$ - subpath of $D$ beginning with $e$ and ending with $e^{\prime}$


## Definition

An edge grading $\omega: E \rightarrow \mathbb{Z}$ is compatible if for every $h \in H$ and $v \in V$ with $h<v$

## -Definition

- For $\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$ with $\mathbf{a} \neq(0,0)$, write $D=D_{\mathbf{a}}$ for the maximal Dyck path in the lattice rectangle $\left[0, a_{1}\right] \times\left[0, a_{2}\right]$.
- $E=\left\{1,2, \ldots, a_{1}+a_{2}\right\}-$ set of edges of $D$
- $H$ - set of horizontal edges of $D$
- $V$ - set of vertical edges of $D$
- ee $e^{\prime}$ - subpath of $D$ beginning with $e$ and ending with $e^{\prime}$


## Definition

An edge grading $\omega: E \rightarrow \mathbb{Z}$ is compatible if for every $h \in H$ and $v \in V$ with $h<v$ there exists $e \in h v$ such that one of the following holds:

## -Proof - Graded Compatible Pairs

## -Definition

- For $\mathbf{a}=\left(a_{1}, a_{2}\right) \in \mathbb{Z}_{\geq 0}^{2}$ with $\mathbf{a} \neq(0,0)$, write $D=D_{\mathbf{a}}$ for the maximal Dyck path in the lattice rectangle $\left[0, a_{1}\right] \times\left[0, a_{2}\right]$.
- $E=\left\{1,2, \ldots, a_{1}+a_{2}\right\}-$ set of edges of $D$
- $H$ - set of horizontal edges of $D$
- $V$ - set of vertical edges of $D$
- $e e^{\prime}$ - subpath of $D$ beginning with $e$ and ending with $e^{\prime}$


## Definition

An edge grading $\omega: E \rightarrow \mathbb{Z}$ is compatible if for every $h \in H$ and $v \in V$ with $h<v$ there exists $e \in h v$ such that one of the following holds:

$$
e \neq v \quad \text { and } \quad|h e \cap V|=\sum_{h^{\prime} \in h e \cap H} \omega\left(h^{\prime}\right)
$$

or

$$
e \neq h \quad \text { and } \quad|e v \cap H|=\sum_{v^{\prime} \in e v \cap v} \omega\left(v^{\prime}\right) .
$$

- For $\omega: E \rightarrow \mathbb{Z}$, define a non-commutative weight $\mathrm{wt}_{\omega}(e) \in \mathbb{K}$ associated to each edge e of $D$ as follows:
- For $\omega: E \rightarrow \mathbb{Z}$, define a non-commutative weight $\mathrm{wt}_{\omega}(e) \in \mathbb{K}$ associated to each edge e of $D$ as follows:

$$
w_{\omega}(e)= \begin{cases}p_{1, \omega(e)} Y^{\omega(e)} X^{-1} & \text { if } e \in H \\ p_{2, d_{2}-\omega(e)} X^{\omega(e)+1} Y^{-1} X^{-1} & \text { if } e \in V\end{cases}
$$

LNon-Commutative Weights

- For $\omega: E \rightarrow \mathbb{Z}$, define a non-commutative weight $\mathrm{wt}_{\omega}(e) \in \mathbb{K}$ associated to each edge $e$ of $D$ as follows:

$$
w_{\omega}(e)= \begin{cases}p_{1, \omega(e)} Y^{\omega(e)} X^{-1} & \text { if } e \in H \\ p_{2, d_{2}-\omega(e)} X^{\omega(e)+1} Y^{-1} X^{-1} & \text { if } e \in V\end{cases}
$$

- Define $Y_{D}=\sum Y_{D}(\omega)$ for $Y_{D}(\omega)=w t_{\omega}(1) w t_{\omega}(2) \cdots \operatorname{wt}_{\omega}\left(a_{1}+a_{2}\right)$
$\omega$ compatible

LNon-Commutative Weights $^{\text {N }}$

- For $\omega: E \rightarrow \mathbb{Z}$, define a non-commutative weight $\mathrm{wt}_{\omega}(e) \in \mathbb{K}$ associated to each edge e of $D$ as follows:

$$
w_{\omega}(e)= \begin{cases}p_{1, \omega(e)} Y^{\omega(e)} X^{-1} & \text { if } e \in H \\ p_{2, d_{2}-\omega(e)} X^{\omega(e)+1} Y^{-1} X^{-1} & \text { if } e \in V\end{cases}
$$

- Define $Y_{D}=\sum Y_{D}(\omega)$ for $Y_{D}(\omega)=w_{\omega}(1) w t_{\omega}(2) \cdots w t_{\omega}\left(a_{1}+a_{2}\right)$ $\omega$ compatible
- Set $\mathbf{a}_{0}=(0,1), \mathbf{a}_{1}=(-1,0), \mathbf{a}_{2}=(0,-1), \mathbf{a}_{3}=(1,0)$
-Non-Commutative Weights
- For $\omega: E \rightarrow \mathbb{Z}$, define a non-commutative weight $\mathrm{wt}_{\omega}(e) \in \mathbb{K}$ associated to each edge e of $D$ as follows:

$$
\mathrm{wt}_{\omega}(e)= \begin{cases}p_{1, \omega(e)} Y^{\omega(e)} X^{-1} & \text { if } e \in H \\ p_{2, d_{2}-\omega(e)} X^{\omega(e)+1} Y^{-1} X^{-1} & \text { if } e \in V\end{cases}
$$

- Define $Y_{D}=\sum Y_{D}(\omega)$ for $Y_{D}(\omega)=w_{\omega}(1) w t_{\omega}(2) \cdots w t_{\omega}\left(a_{1}+a_{2}\right)$ $\omega$ compatible
- Set $\mathbf{a}_{0}=(0,1), \mathbf{a}_{1}=(-1,0), \mathbf{a}_{2}=(0,-1), \mathbf{a}_{3}=(1,0)$ and define $\mathbf{a}_{k} \in \mathbb{Z}_{\geq 0}^{2}$ for $k \in \mathbb{Z} \backslash\{0,1,2,3\}$ recursively by
-Non-Commutative Weights
- For $\omega: E \rightarrow \mathbb{Z}$, define a non-commutative weight $\mathrm{wt}_{\omega}(e) \in \mathbb{K}$ associated to each edge e of $D$ as follows:

$$
w_{\omega}(e)= \begin{cases}p_{1, \omega(e)} Y^{\omega(e)} X^{-1} & \text { if } e \in H \\ p_{2, d_{2}-\omega(e)} X^{\omega(e)+1} Y^{-1} X^{-1} & \text { if } e \in V\end{cases}
$$

- Define $Y_{D}=\sum Y_{D}(\omega)$ for $Y_{D}(\omega)=w_{\omega}(1) w t_{\omega}(2) \cdots w t_{\omega}\left(a_{1}+a_{2}\right)$ $\omega$ compatible
- Set $\mathbf{a}_{0}=(0,1), \mathbf{a}_{1}=(-1,0), \mathbf{a}_{2}=(0,-1), \mathbf{a}_{3}=(1,0)$ and define $\mathbf{a}_{k} \in \mathbb{Z}_{\geq 0}^{2}$ for $k \in \mathbb{Z} \backslash\{0,1,2,3\}$ recursively by

$$
\mathbf{a}_{k-1}+\mathbf{a}_{k+1}= \begin{cases}d_{2} \mathbf{a}_{k} & \text { if } k \text { is odd } \\ d_{1} \mathbf{a}_{k} & \text { if } k \text { is even }\end{cases}
$$

## -Proof - Graded Compatible Pairs

LNon-Commutative Weights

- For $\omega: E \rightarrow \mathbb{Z}$, define a non-commutative weight $\mathrm{wt}_{\omega}(e) \in \mathbb{K}$ associated to each edge $e$ of $D$ as follows:

$$
w_{\omega}(e)= \begin{cases}p_{1, \omega(e)} Y^{\omega(e)} X^{-1} & \text { if } e \in H \\ p_{2, d_{2}-\omega(e)} X^{\omega(e)+1} Y^{-1} X^{-1} & \text { if } e \in V\end{cases}
$$

- Define $Y_{D}=\sum Y_{D}(\omega)$ for $Y_{D}(\omega)=w_{\omega}(1) w t_{\omega}(2) \cdots w t_{\omega}\left(a_{1}+a_{2}\right)$ $\omega$ compatible
- Set $\mathbf{a}_{0}=(0,1), \mathbf{a}_{1}=(-1,0), \mathbf{a}_{2}=(0,-1), \mathbf{a}_{3}=(1,0)$ and define $\mathbf{a}_{k} \in \mathbb{Z}_{\geq 0}^{2}$ for $k \in \mathbb{Z} \backslash\{0,1,2,3\}$ recursively by

$$
\mathbf{a}_{k-1}+\mathbf{a}_{k+1}= \begin{cases}d_{2} \mathbf{a}_{k} & \text { if } k \text { is odd } \\ d_{1} \mathbf{a}_{k} & \text { if } k \text { is even }\end{cases}
$$

## Theorem

For $k \geq 1, Y_{k}=Y_{D_{a_{k}}}$.

# -Rank Two Valued Quiver Grassmannians 

## Theorem (R. 2017)

The number of points in the quiver Grassmannian $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ is given by
-Rank Two Valued Quiver Grassmannians

## Theorem (R. 2017)

The number of points in the quiver Grassmannian $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ is given by

$$
\left|G r_{e_{1}, e_{2}}\left(P_{k}\right)\right|=\sum_{\substack{\omega: E \rightarrow \mathbb{Z} \\ \text { compatible }}} q^{\gamma_{\omega}}, \quad \text { where }
$$

## Theorem (R. 2017)

The number of points in the quiver Grassmannian $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ is given by

$$
\left|G r_{e_{1}, e_{2}}\left(P_{k}\right)\right|=\sum_{\substack{\omega: E \rightarrow \mathbb{Z} \\ \text { compatible }}} q^{\gamma_{\omega}}, \quad \text { where }
$$

- $\omega(H) \subset\left\{0, d_{1}\right\}$ and $\omega(V) \subset\left\{0, d_{2}\right\}$


## Theorem (R. 2017)

The number of points in the quiver Grassmannian $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ is given by

$$
\left|\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)\right|=\sum_{\substack{\omega: E \rightarrow \mathbb{Z} \\ \text { compatible }}} q^{\gamma_{\omega}}, \quad \text { where }
$$

- $\omega(H) \subset\left\{0, d_{1}\right\}$ and $\omega(V) \subset\left\{0, d_{2}\right\}$
- $|\operatorname{supp}(\omega \mid v)|=e_{2}$ and $\left|\operatorname{supp}\left(\left.\omega\right|_{H}\right)\right|=\mathbf{a}_{k, 1}-e_{1}$


## Theorem (R. 2017)

The number of points in the quiver Grassmannian $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ is given by

$$
\left|G r_{e_{1}, e_{2}}\left(P_{k}\right)\right|=\sum_{\substack{\omega: E \rightarrow \mathbb{Z} \\ \text { compatible }}} q^{\gamma_{\omega}}, \quad \text { where }
$$

- $\omega(H) \subset\left\{0, d_{1}\right\}$ and $\omega(V) \subset\left\{0, d_{2}\right\}$
- $|\operatorname{supp}(\omega \mid v)|=e_{2}$ and $\left|\operatorname{supp}\left(\left.\omega\right|_{H}\right)\right|=\mathbf{a}_{k, 1}-e_{1}$
with $\gamma_{\omega}=\sum_{e<e^{\prime}} \gamma_{\omega}\left(e, e^{\prime}\right)$ for


## Theorem (R. 2017)

The number of points in the quiver Grassmannian $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ is given by

$$
\left|G r_{e_{1}, e_{2}}\left(P_{k}\right)\right|=\sum_{\substack{\omega: E \rightarrow \mathbb{Z} \\ \text { compatible }}} q^{\gamma_{\omega}}, \quad \text { where }
$$

- $\omega(H) \subset\left\{0, d_{1}\right\}$ and $\omega(V) \subset\left\{0, d_{2}\right\}$
- $|\operatorname{supp}(\omega \mid v)|=e_{2}$ and $\left|\operatorname{supp}\left(\left.\omega\right|_{H}\right)\right|=\mathbf{a}_{k, 1}-e_{1}$ with $\gamma_{\omega}=\sum_{e<e^{\prime}} \gamma_{\omega}\left(e, e^{\prime}\right)$ for

$$
\gamma_{\omega}\left(e, e^{\prime}\right)= \begin{cases}-d_{1} d_{2} & \text { if } e \in \operatorname{supp}\left(\left.\omega\right|_{H}\right) \text { and } e^{\prime} \in \operatorname{supp}\left(\left.\omega\right|_{V}\right) \\ d_{1} & \text { if } e \in \operatorname{supp}\left(\left.\omega\right|_{H}\right) \text { and } e^{\prime} \in H \backslash \operatorname{supp}\left(\left.\omega\right|_{H}\right) \\ d_{2} & \text { if } e \in V \backslash \operatorname{supp}\left(\left.\omega\right|_{V}\right) \text { and } e^{\prime} \in \operatorname{supp}\left(\left.\omega\right|_{V}\right) \\ 0 & \text { otherwise }\end{cases}
$$

- Question: Is there a decomposition of $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ into affine cells which explains the existence of these counting polynomials?
- Question: Is there a decomposition of $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ into affine cells which explains the existence of these counting polynomials?
- If so, the cells should be labeled by compatible gradings $\omega$ with the dimension of the cell corresponding to $\omega$ given by $\gamma_{\omega}$.
- Question: Is there a decomposition of $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ into affine cells which explains the existence of these counting polynomials?
- If so, the cells should be labeled by compatible gradings $\omega$ with the dimension of the cell corresponding to $\omega$ given by $\gamma_{\omega}$.


## Theorem (R.-Weist, coming soon)

Each quiver Grassmannian $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ has such a decomposition into affine cells.

- Question: Is there a decomposition of $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ into affine cells which explains the existence of these counting polynomials?
- If so, the cells should be labeled by compatible gradings $\omega$ with the dimension of the cell corresponding to $\omega$ given by $\gamma_{\omega}$.


## Theorem (R.-Weist, coming soon)

Each quiver Grassmannian $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ has such a decomposition into affine cells.

- Schubert-like conditions cutting out these cells?
- Question: Is there a decomposition of $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ into affine cells which explains the existence of these counting polynomials?
- If so, the cells should be labeled by compatible gradings $\omega$ with the dimension of the cell corresponding to $\omega$ given by $\gamma_{\omega}$.


## Theorem (R.-Weist, coming soon)

Each quiver Grassmannian $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ has such a decomposition into affine cells.

- Schubert-like conditions cutting out these cells?
- Combinatorial description of closures of cells?
- Question: Is there a decomposition of $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ into affine cells which explains the existence of these counting polynomials?
- If so, the cells should be labeled by compatible gradings $\omega$ with the dimension of the cell corresponding to $\omega$ given by $\gamma_{\omega}$.


## Theorem (R.-Weist, coming soon)

Each quiver Grassmannian $\operatorname{Gr}_{e_{1}, e_{2}}\left(P_{k}\right)$ has such a decomposition into affine cells.

- Schubert-like conditions cutting out these cells?
- Combinatorial description of closures of cells?
- Intersection theory?


## Thank you!

