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1. Vertex algebras and conformal
structure

A vertex operator algebra is a vertex algebra with a con-

formal structure.

A vertex operator is an operator valued function on the

Riemann sphere.

1.1. Fields Given a vector space V (over C), set

V [[z±1]] = {f(z) =
∑
n∈Z

vnz
−n−1 | vn ∈ V }

V ((z)) = {
∑
n∈Z

vnz
−n−1 | vn ∈ V, vn = 0 for n >> 0}

Given two vector spaces V and W , denote

Hom(V,W (z))

= {φ(z) ∈ Hom(V,W )[[z±1]] | φ(z)(v) ∈W ((z)), ∀v ∈ V }

Note that V is finite dimensional if and only if

Hom(V,W ((z))) = Hom(V,W )((z)).



A field on V is an element in Hom(V, V ((z))).

Remark 1. Given two fields φ(z), ψ(z) ∈ Hom(V, V ((z))

the composition φ(z)◦ψ(z) does not make any sense. This

raises the equation of operator product expansion (OPE)

problem in conformal field theory (we will not discuss the

locality property)

1.2. Vertex algebras

Definition 1. A vertex algebra is a vector space V to-

gether with a map

(1) (state-field correspondence)

Y (·, z) : V → Hom(V, V ((z))).

(2) (vacuum) 1 ∈ V satisfying the following:

(a) (Commutativity): For any v, u ∈∈ V , there is an

N(u, v) > 0 such that

(z1 − z2)N(u,v)[Y (u, z1), Y (v, z2)] = 0

(b) (Associativity) For any v, w ∈ V , there is l(u,w) > 0

such that

(z1 + z2)l(u,w)Y (Y (u, z1)v, z2)w

= (z1 + z2)l(u,w)Y (u, z1 + z2)Y (v, z2)w

(c) Y (1, z) = Id, Y (v, z)1 = v +D(v)z + · · · .



with D ∈ End(V ) and

[D,Y (v, z)] = Y (D(v), z) =
d

dz
Y (v, z)

Example 1. If A is a commutative associative algebra

with identity 1, then A is a vertex algebra with

Y (a, z) = la

with la being the left multiplication on A by a ∈ A and

D = 0.

A vertex algebra is denoted by (V, Y, 1).

For each v ∈ V , we denote

Y (v, z) =
∑
n
vnz
−n−1, vn ∈ End(V )

1.3. Conformal structures

Definition 2. A conformal structure on a vertex algebra

(V, Y, 1) is an element ω ∈ V such that

Y (ω, z) =
∑
n
ωnz
−n−1 =

∑
n
L(n)z−n−2

with (ωn+1 = L(n))

[L(m), L(n)] = (m− n)L(m+ n) +
m3 −m

12
δm+n,0c Id .



This means that the operators {L(n) | n ∈ Z} defines a

module structure on V for the Virasoro Lie algebra Vir.

The vector ω is called a Virasoro vector or a conformal

vector.

Remark 2. On a vertex algebra (V, Y, 1), there can be

many different conformal structures. The moduli space

of conformal structures on a vertex algebra in general has

not been well studied yet.

1.4. Vertex operator algebras

Definition 3. A vertex operator algebra is a vertex alge-

bra (V, Y, 1) with a conformal structure ω ∈ V such that

(i) The operator L(0) : V → V is semi-simple with integer

eigenvalues and finite dimensional eigenspaces

Vn = ker(L(0)− n), i.e.,

V = ⊕n∈ZVn

(ii) Vn = 0 if n << 0.

(iii) L(−1) = D.

Remark 3. Let A be a commutative algebra over C.

Then A is a vertex operator algebra if and only if A is

finite dimensional. In this case, A = A0.



Example 2. (Heisenberg vertex algebra) ĥ = C[t, t−1]

is a commutative associative algebra. Any f(z) =
∑
n ant

n ∈
C[[t, t−1]] defines an element

φf(z) =
∑
n∈Z

(ant
n)z−n−1 ∈ End(ĥ)[[z, z−1]]

with antn : ĥ → ĥ by multiplication. Then φf(z) is in

Hom(ĥ, ĥ((z))) if and only if an = 0 for n >> 0, i. e.,

f ∈ C((t−1)).

On ĥ, one defines a skew symmetric bilinear form

(f, g) = rest(f
′g).

Then V becomes a Z-graded Lie algebra (Heisenberg Lie

algebra ) with commutator

[f, g] = (f, g)1 ∈ ĥ

[tn, tm] = nδn+m,01

Define:

V = Vĥ(l,0) = U(ĥ)⊗U(ĥ≥0) Cl.

This is an induced module for the Heisenberg Lie algebra

ĥ. It has a unique vertex algebra structure extending

Y (a, z) =
∑
n

(atn)z−n−1



with the Lie algebra element atn acting on the module V .

Example 3. Let g be a finite dimensional Lie algebra with

a non-degenerate invariant symmetric bilinear form 〈·, ·〉.
For example any finite dimensional reductive Lie algebra

g has this property. In particular the abelian Lie algebra

h = C⊕d with the standard symmetric bilinear form. Then

ĝ = g⊗ C[t±] + Cc

is a Z-graded Lie algebra with

[x⊗ tm, y ⊗ tn] = [x, y]⊗ tm+n +mδm+n,0〈x, y〉c.

For any l ∈ C, Cl is a module for the Lie algebra ĝ0 = g⊕Cc
with c acting by l and g acts trivially.

Then induced ĝ-module

Vĝ(l,0) = U(ĝ)⊗U(ĝ≥0) Cl
has a unique vertex algebra structure extending

Y (x, z) =
∑
n

(x⊗ tn)z−n−1

with x⊗ tn in ĝ acting on the module Vĝ(l,0).

Remark 4. The category of modules for the vertex alge-

bra Vĝ(l,0) corresponds to the category of modules con-

sidered in Kazhdan-Lusztig in their construction of the



tensor product (which is different from usual tensor of

representations of Lie algebras). This tensor product re-

flects the fusion properties of vertex algebras.

1.5. Constructing conformal structures, Casimir El-

ements

In the above setting, take an orthonormal basis vi in g

with respect to the symmetric form 〈·, ·〉 and define the

Casimir element

Ω =
∑
i

vivi ∈ U(g)

which is always in the center of U(q). Uk ander the adjoint

g-module structure, g is a U(g)-module and assume there

there is an h ∈ C such that

Ω(x) = 2hx ∀x ∈ g

h is called dual Coxeter number of a simple Lie algebra.

If l ∈ C such that l + h 6= 0, then

ω =
1

2(l + h)

∑
i

(vit−1)21 ∈ Vĝ(l,0)

is a conformal structure and L(0) action on Vĝ(l,0) is the

standard degree operator.

Remark 5. When g is the Lie algebra of diagonal n× n
matrices. Then h = 0. For l 6= 0, the vertex operator



algebra Vĝ(l,0) is called the Heisenberg vertex operator

algebra.

When g is a finite dimensional simple Lie algebra, l 6= −h,

the vertex operator algebra Vĝ(l,0) is called the universal

affine vertex operator algebra.

Remark 6. In general Vĝ(l,0) is a highest weight module

for the affine Lie algebra ĝ which has a unique simple

quotient module

Lĝ(l,0) = Vĝ(l,0)/unique max submodule

which is also a vertex operator algebra. This is the case

when l is a positive integer. In this case, the category of

Lĝ(l,0)-modules is semisimple with finitely irreducibles.

Such VOA is called rational.

It is expected that for any vertex operator algebra (V, Y, 1),

the category of representations is a tensor category. When

V is rational, the representation category is modular ten-

sor category.

1.6. Homomorphisms of vertex operator algebras

We will denote a vertex operator algebra (VOA) by (V, Y, ω, 1).

When Y, ω, 1 are understood, one will only use V to denote

a vertex operator algebra (or a vertex algebra).



Definition 4. A vertex algebra homomorphism

f : (V, Y V , 1V )→ (W,YW , 1W )

is a linear map

f : V →W

f(Y V (v, z)u) = YW (f(v), z)f(u), ∀u, v ∈ V
f(1V ) = 1W .

Note that automatically f ◦DV = DW ◦ f

Definition 5. A vertex operator algebra homomorphism

f : (V, Y V , ωV , 1V ) → (W,YW , ωW , 1W ) is a vertex algebra

homomorphism and additionally f(ωV ) = ωW

Remark 7. If f : (V, Y V , ωV , 1V ) → (W,YW , ωW , 1W ) is

only a homomorphism of vertex algebra, then we always

have f ◦ LV (−1) = LW (−1) ◦ f .

f is a vertex operator algebra homomorphism if and only

if

f ◦ LV (n) = LW (n) ◦ ∀n ∈ Z

2. Semi-conformal vectors and semi-
conformal subalgebras of a vertex op-
erator algebra



2.1.Semi-conformal homomorphisms

Definition 6. Let (V, Y V , ωV , 1V ) and (W,YW , ωW , 1W )

be two vertex operator algebras. A vertex algebra mor-

phism f : V →W is said to be semi-conformal if

f ◦ ωVn = ωWn ◦ f ∀n ≥ 0.

Note that f is conformal if and only if

f ◦ ωVn = ωWn ◦ f ∀n

if and only if

f ◦ ωV−1 = ωW−1 ◦ f

.

Remark 8. Noting that for any vertex algebra homomor-

phism f , we always have f ◦ LV (−1) = LW (−1). Thus

f is semi-conformal if and only if f ◦ LV (n) = LW (n) ◦
f, for all n ≥ 0

Thus there are two categories of vertex operator alge-

bras using conformal morphisms and semi-conformal mor-

phisms respectively. One is a subcategory (not full) of the

other.

Theorem 1 (Jiang-L). Any surjective semi-conformal

homomorphism between two vertex operator algebras is

conformal.



Corollary 1. The automorphisms and isomorphisms in

these two categories are the same. Thus the problem

of classifications of vertex operator algebras in these two

categories are the same.

2.2. Vertex operator subalgebras

Given a vertex algebra (W,Y, 1). The vertex subalgebra

is a subspace U ⊆ W such that Y (u, z)U ⊆ U((z)) for all

u ∈ U and 1 ∈ U .

But when we talk about vertex operator subalgebra U , it

is vertex subalgebra with a conformal structure ωU .

Classically, one would require that ωU = ωW . But most of

the constructions will involve vertex operator subalgebras

that does not preserve this property.

Definition 7. A vertex subalgebra U of (W,Y, ω, 1) with

conformal structure ωU is said to be semi-conformal if the

inclusion map is semi-conformal.

Theorem 2 (Jiang-L). On a vertex subalgebra U of a

vertex operator algebra (W,Y, ω, 1), the conformal struc-

ture ωU making U semi-conformal is unique.

Thus we can talk about semi-conformal vertex subalgebra

without mentioning what the conformal structure is!



2.3. Semi-conformal vectors

Definition 8. An element ω′ in W is called a semi-conformal

vector if there is a vertex subalgebra U such that ω′ ∈ U
defines a conformal structure on U making (U, ω′) a semi-

conformal subalgebra.

For a vertex operator algebra (W,ω), we define

ScAlg(W,ω) = {(U, ω′) | (U, ω′) a semi-conf. subalg.};
Sc(W,ω) = {ω′ ∈W | ω′ a,semi-conf. vector};

Theorem 3 (Chu-L). For any vertex operator algebra

(W,Y, ω, 1), Sc(W,ω) is a Zariski closed subset of W2, thus

an algebraic variety.

3. Coset constructions in conformal
field theory
Given any vertex algebra (W,Y, 1), any subset S ⊆ W

define the centralizer

CW (S) = {w ∈W | [Y (w, z1), Y (u, z2)] = 0, ∀u ∈ S}

Note that: [Y (w, z1), Y (u, z2)] = 0 if and only if wnum =

umwn for all m,n ∈ Z.

The following standard facts are obvious:

• CW (S) is always a vertex subalgebra;

• CW (S) = CW (< S >), where < S > is the vertex subal-

gebra generated by S.



Not obvious but is true:

CW (S) = {w ∈W | wn(u) = 0, ∀n ≥ 0, u ∈ S}
= {w ∈W | un(w) = 0, ∀n ≥ 0, u ∈ S}

Theorem 4 (Chu-Lin). If (U, ω′) is semi-conformal ver-

tex subalgebra of (W,ω), then CW (U) is also a semi-

conformal vertex subalgebra with conformal structure ω−
ω′.

Theorem 5 (Chu-Lin). For any semi-conformal vertex

subalgebra (U, ω′), the contralizer CW (U) does not depend

on U , but on the conformal element ω′ only. i.e., for any

two semi-conformal vertex subalgebras (U, ω′) and (U ′, ω′)
with the same ω′, then CW (U) = CW (U ′).

Corollary 2. Sc(W,ω) has a poset structure and an order

reversing involution ω 7→ ω̄.

The projection map ScAlg(W,ω)→ Sc(W,ω) (U, ω′) 7→ ω′

has two sections

ω′ 7→< ω′ > and ω′ 7→ U(ω′) = CW (CW (ω′).

< ω′ > is a minimal model (Virasoro vertex operator

algebra) which does not reflect the properties of W as

much as U(ω) does.

U defines a cosheaf of vertex operator algebras on Sc(W,ω).



The automorphism group G = Aut(W,ω) acts on both

ScAlg(W,ω) and Sc(W,ω). We will also be interested in

determining G-orbit structures.

4. Affine Constructions

Recall that for a finite dimensional Lie algebra g with non-

degenerate symmetric invariant bilinear form 〈·, ·〉 such

that the Casimir element Ω acting on g by constant 2h.

For any subalgebra a of g such that 〈·, ·〉a is non-degenerate,

then a(−1) = (a⊗ t−1)1 generates a vertex subalgebra in

Vĝ(l,0) (or in Lĝ(l,0)) and it is semi-conformal. Its cen-

tralizer is also semi-conformal.

Theorem 6 (Chu-L). Let h = Cd be the abelian Lie

algebra with standard symmetric non-degenerate bilinear

form. Then ĥ is the (affine) Heisenberg Lie algebra of

rank d. For any level l 6= 0.

Sc(Vĥ(l,0) = {h′ ≤ h | h′ is a nondegenerate subspace}

Theorem 7 (Chu-L). Let (W,ω) be a simple vertex oper-

ator algebra of CFT type (W =
∑∞
n=0Wn with W0 = C1)

and generated by W1. If for any ω′ ∈ Sc(W,ω) one have

W = U(ω′)⊗ CW (U(ω′))



and the maximal chain length in Sc(W,ω) is dimW1, then

W ∼= Vĥ(l,0) with dim h = dimW1 with standard ω.

Remark 9. On Vĥ(l,0) there are other conformal struc-

tures with the same L(0) which can also be characterized

in such way.

Here a can be the Cartan subalgebra h. a can also be any

Levi-subalgebra in case that g is a simple Lie algebra or

any a = gσ for an involution σ ∈ Aut(g).

Conjecture 1 (Dong). If (W,ω) rational and U is a ra-

tional semi-conformal vertex subalgebra, then CW (U) is

also a rational.

Example 4. If g if finite dimensional simple Lie algebra

and h is the Cartan subalgebra, then CLĝ
(ht−11) is called

the parafermion vertex operator algebra. it was conjec-

tured that it rational. Jing-Lin proved the special case.

It was recently proved by Dong.

Example 5. An even lattice L is a free abelian group

of finite rank with positive definite symmetric bilinear Z-

value form such that all vectors even length. There is a

way to construct vertex operator algebra VL. This vertex

operator algebra is always rational.

If L is root lattice of an semisimple Lie algebra g, then



VL = Vĝ(1,0) (level one). If L′ is positive definite sub-

lattice such that (L′)⊥ is also positive definite, then VL′

both V(L′)⊥ are semi-conformal subvertex algebras and

VL′ ⊗ V(L′)⊥ are conformal subalgebras of VL.

Example 6. L and L′ are two even lattices then L ⊗ L′

is also even lattices. There are many ways of embedding

L and L′ into L ⊗ L′. Their centralizers of VL′ in VL⊗L′
are all semi-conformal subalgebras. This arguments was

also used in the Schur-Weyl duality and level-rank dual-

ity. More generally on representations of symmetric pairs,

(Mirror dual?)

THANK YOU!


