Dimer models on cylinders over Dynkin diagrams

Maitreyee Kulkarni

Conference on Geometric methods in Representation Theory

Louisiana State University

- G: simply connected complex algebraic group of type ADE
- P: parabolic subgroup
- G/P: partial flag variety
- $\mathbb{C}[G/P]$: coordinate ring

Geiss - Leclerc - Schröer

There exists a cluster algebra structure on $\mathbb{C}[G/P]$ using subcategory of modules over a preprojective algebra

Jensen - King - Su

 $\mathbb{C}[Gr(k, n)]$ has a categorification via a category of Cohen-Macaulay modules of a certain ring.

Baur - King - Marsh

Gave a combinatorial description of the JKS categorification via dimer models.

Theorem (BKM)

The Jacobian algebra $A_D \cong End_B T_D$.

Want a combinatorial model for cluster structure of double Bruhat cells on Kac–Moody group G.

Definition

Let
$$Q: \begin{array}{c} 1 \xrightarrow{a} 2 \\ \downarrow_{b} \\ 3 \xleftarrow{c} 4 \end{array}$$
 with potential $P = abcd$

Cyclic derivatives, $\partial_a(P) = bcd$, $\partial_b(P) = cda$, $\partial_c(P) = dab$, $\partial_d(P) = abc$

Definition

Let
$$Q: \begin{array}{c} 1 \xrightarrow{a} 2 \\ \downarrow_{b} \\ 3 \xleftarrow{c} 4 \end{array}$$
 with potential $P = abcd$

Cyclic derivatives, $\partial_a(P) = bcd$, $\partial_b(P) = cda$, $\partial_c(P) = dab$, $\partial_d(P) = abc$

Jacobian ideal, J(P) = Ideal generated by $\{\partial_a(P), \partial_b(P), \partial_c(P), \partial_d(P)\}$

Jacobian algebra, $A(Q, P) = \mathbb{C}Q/J(P)$

Definition

Let
$$Q: \begin{array}{c} 1 \xrightarrow{a} 2 \\ \downarrow_{b} \\ 3 \xleftarrow{c} 4 \end{array}$$
 with potential $P = abcd$

Cyclic derivatives, $\partial_a(P) = bcd$, $\partial_b(P) = cda$, $\partial_c(P) = dab$, $\partial_d(P) = abc$

Jacobian ideal, J(P) = Ideal generated by $\{\partial_a(P), \partial_b(P), \partial_c(P), \partial_d(P)\}$

Jacobian algebra, $A(Q, P) = \mathbb{C}Q/J(P)$

Superpotential ${\it S}=\sum$ anticlockwise cycles - \sum clockwise cycles

Want a combinatorial model for cluster structure of double Bruhat cells on Kac–Moody group G.

A Kac-Moody group G behaves like a semi-simple Lie group.

Fact

In particular, G is a disjoint union of the double Bruhat cells

$$G^{u,v} = B_+ u B_+ \cap B_- v B_-$$

where $u, v \in W$

Berenstein, Fomin and Zelevinsky gave a combinatorial way of getting a quiver from double Bruhat cells in Cluster Algebras III.

$$(G, u, v) \rightsquigarrow Q^{u,v}(call BFZ quiver)$$

Example (BFZ quiver)

Example

$$W = S_4, \ u = s_3 s_2 s_1 s_2 s_3, \ v = e$$

$$Gr(k, n) \longrightarrow w_n \in S_n$$
 $\downarrow_{BKM} \qquad \qquad \downarrow_{BFZ}$
 $dimer \xrightarrow{\sim} Q^{w_n, e}$

In type A, the BFZ quivers are planar, but not true in general.

Instead of drawing them on a plane, we will draw the BFZ quivers on the cylinders over the corresponding Dynkin digrams.

Quivers in other types

Instead of drawing them on a plane, we will draw the BFZ quivers on the cylinders over the corresponding Dynkin digrams.

Theorem (K)

For any symmetric Kac–Moody group G, the quiver $Q^{u,v}$ is planar in each sheet.

Example of a dimer model on a cylinder over E_7

 $u = s_1 s_3 s_2 s_4 s_5 s_7 s_3 s_6 s_1 s_5 s_7 s_6 s_4 s_3 s_2 s_1 s_4 s_5 s_6 s_7$

Theorem (K)

- Each face of $Q^{u,v}$ is oriented.
- Each face of Q^{u,v} on the cylinder projects onto an edge of the Dynkin diagram.
- Each edge of Q^{u,v} projects onto a vertex of the Dynkin diagram or an edge of the Dynkin diagram.

To get the quiver $Q^{u,v}$, we attach the quiver $Q^{e,v}$ on top of the quiver $Q^{u,e}$. We will see this with $u = s_1s_2s_1s_3$, $v = s_2s_3s_3s_1 \in S_4$.

To get the quiver $Q^{u,v}$, we attach the quiver $Q^{e,v}$ on top of the quiver $Q^{u,e}$. We will see this with $u = s_1s_2s_1s_3$, $v = s_2s_3s_3s_1 \in S_4$.

The quivers $Q^{u,v}$

Figure 1: Case 1

Figure 2: Case 2

We need the superpotential of these quivers to be Rigid. Rigid: None of the mutations of the potential creates a 2-cycle.

We need the superpotential of these quivers to be Rigid. Rigid: None of the mutations of the potential creates a 2-cycle. **Definition** A potential S is called rigid if every oriented cycle in *Q* belongs to

the Jacobian ideal J(S) up to cyclic equivalence.

Example (Non-example)

 $J(S_1) = \langle bc, ca, ab \rangle$. So $abc \in J(S_1)$ but $cde \notin J(S_1)$. Therefore S_1 is not rigid.

Example (Non-example)

 $J(S_1) = \langle bc, ca, ab \rangle$. So $abc \in J(S_1)$ but $cde \notin J(S_1)$. Therefore S_1 is not rigid.

Example

 $J(S_2) = \langle bc, ca, ab + de, ec, cd \rangle$. So $abc \in J(S_2)$ but $cde \in J(S_2)$. Therefore S_2 is rigid.

Theorem (Buan-Iyama-Reiten-Smith, K)

Let \mathfrak{g} be a simply laced, star shaped Kac-Moody Lie algebra and $Q^{u,e}$ be the quiver corresponding to the double Bruhat decomposition. Then the superpotential of $Q^{u,e}$ is rigid.

Thank you!