Quiver Representations and Theta Functions

Man Wai Cheung

Motivation from mirror symmetry

-Mirror symmetry: study the duality between a pair of spaces which we called it as mirror pair; motivated by string theory

Motivation from mirror symmetry

-Mirror symmetry: study the duality between a pair of spaces which we called it as mirror pair; motivated by string theory

-Scattering diagrams: 2-dimensional case were raised by Kontsevich-Soibelman when they study K3 surface. The general case were studied by Gross-Siebert in order to describe the toric degeneration of Calabi-Yau varieties so as to construct mirrors.

Motivation from mirror symmetry

-Mirror symmetry: study the duality between a pair of spaces which we called it as mirror pair; motivated by string theory

-Scattering diagrams: 2-dimensional case were raised by Kontsevich-Soibelman when they study K3 surface. The general case were studied by Gross-Siebert in order to describe the toric degeneration of Calabi-Yau varieties so as to construct mirrors.

 Theta functions: [Gross-Hacking-Keel-Siebert] use to construct the mirror to an arbitrary log Calabi-Yau surface.
 ~describe counting of tropical curves

Quiver representation
Q: (acyclic) uiver of romk n ustn: Qo: Set of Ventices, QI: Set of amous
r denventor of quiververp.
let N=ZQo and M=Hom (NiZ), i.e. n=#ventices in Q.
Now, we define
$$\{\cdot, \cdot\}$$
 on N as
 $\{li, lj\} = \{\#amon from i \rightarrow j\} - \{\#amon from j to i\}$

Quiver representation

$$Q:(acyclic)$$
 uiver of romten with: $Q_0: set of vertices, Q_1: set of amous
, domvertor of guivernesp.
let $N=ZQ_0$ and $M=Hom(N/Z)$, i.e. $n=\#vertices$ in Q_1 .
Now, we define $\{\cdot, \cdot\}$ on N as
 $\{e_{i},e_{j}\}=\{\#anrow from i\rightarrow j\}-\{\#anrow from j to i\}$
Define a bilinear form $\chi(\cdot, \cdot)$, the Enler form, on N as
 $\chi(d, e) = \sum_{i=Q_0} die i - \sum_{N=i+j} die j = 0, e \in N$$

Define
$$\Sigma: N \rightarrow M$$
 by $\Sigma(d) = \chi(\cdot, d)$

Scattering diagram
E.g.
$$(+A_{z})^{-1}$$

 $(+A_{z})^{-1}$
 $(+A_{z})^{-1}$

Wall (difd)

· d SMR, support of the wall, is a comex rational pulyhedral

concof codimension one, dent for some neut (î.l. Ni 20 42)

A wall (d,fd) is called outgoing if -p*(n) ed

Wall (difd)

· d SMR, support of the wall, is a comex rational pulyhedral

concof codimension one, dent for some nent (i.e. Ni ≥0 Vi)

A wall (d,fd) is called outgoing if -p*(n) ed

Consisting conditions

Anslonder-Reiten theory
A wory to "line up" inveducible rep. of a quivor.
l.g.
$$72 \sim 7 \qquad C \neq C$$

 $0 \neq C \qquad 0 \neq C$

Auslander-Reiten theory
A wory to "line up" irreductible rep. of a guiver.
l.g.
$$r > 2 \rightarrow 9$$

 $0 \rightarrow C \qquad 0 \rightarrow C$
 \downarrow

Auslander-Reiten theory
A wory to "line up" irreductible rep. of a guiver.
l.g.
$$r > 2 \rightarrow 0 \qquad C \rightarrow C$$

 $0 \rightarrow C \qquad 0 \rightarrow C$

Theta function - given by broken line
Fix.
$$\mathfrak{g}: Scattering oling.$$

 $\mathsf{M} \in \mathsf{M} : \mathsf{M} \in \mathsf{G}$
 $\mathsf{Q} \in \mathsf{G} : \mathsf{m} \in \mathsf{M} : \mathsf{R} \mid <\mathsf{m} : \mathsf{e} : >> \mathsf{o} \neq \mathsf{i} \mathsf{f}$
 $\mathsf{H} \mathsf{h}_2$
 h_2
 $\mathsf{H} \mathsf{h}_2$
 $\mathsf{H} \mathsf{h}_2$
 h_2
 $\mathsf{H} \mathsf{h}_2$
 $\mathsf{H} \mathsf{h}_2$
 h_2
 $\mathsf{H} \mathsf{h}_2$
 h_2
 \mathsf

$$\frac{\text{Thm}\left(\text{aldero-Inapoton}\right)\left[\text{let } Q \text{ be a finite quiver whn}\right]}{\text{Ventiles 1,..., n. and D a f.d. reps of Q with dimensionVentor d. For et N,denste Givle, D):= {EEmod (Q) {ESD, dim(E) = e}}Define
$$CC(D) = \frac{1}{A_{i}d...,k_{in}} \sum_{o \in e \in d} \chi(Giv(e_{i}D)) \prod_{i=1}^{n} A_{i}^{\sum_{i=1}^{n}} \frac{1}{i_{i}} \frac{1}$$$$

Then
$$CC(D) = XD$$
 Muster vouriable obtained
from D.

The (Caldero-Chapoton) let Q be a finite guver with
Ventices 1,..., n. and D a f.d. repp of Q with dimension
Ventor d. For eth),
denote Garle, D) :=
$$\{E \in Mod(Q) | E \leq D, dm(E) = e\}$$

Define
 $CC(D) = Adminder X(Grv(e,D)) \text{ If } A_{V}^{Substantial} + \sum_{i=1}^{2} (d_i - e_i)$

$$CCLD) = \frac{1}{A^{d}} \sum_{0 \le k \le d} \chi (Gr(k, D)) \prod_{i=1}^{n} A_{i}^{\frac{1}{2} \ge i} \sum_{j=1}^{n} (d_{j} - e_{j})$$

$$= \frac{\prod A_{i}^{\frac{1}{2} \ge d_{j}}}{\prod A_{i}^{\frac{1}{2} \le i}} \sum_{0 \le k \le d} \chi (Gr(k, D)) \prod_{i=1}^{n} A_{i}^{\frac{1}{2} \ge i} \sum_{j=1}^{n} e_{j}$$

$$= A^{-\mathcal{E}(d)} \sum_{0 \le k \le d} \chi (Gr(k, D)) \prod_{i=1}^{n} A_{i}^{\frac{1}{2} \ge i} A_{i}^{\frac{1}{2} \ge i}$$

$$CC(D) = \frac{1}{A^{d}} \sum_{0 \le k \le d} \chi (G_{kr}(e, 0)) \prod_{i=1}^{n} A_{i}^{\frac{1}{3}} \sum_{i=1}^{n} (g_{i} - e_{i})$$

$$= \frac{T(A_{i}^{\frac{1}{3}}) d_{j}}{T(A_{i}^{\frac{1}{3}})} \sum_{0 \le k \le d} \chi (G_{kr}(e_{i} D)) \prod_{k=1}^{n} A_{i}^{\frac{1}{3}} \sum_{i=1}^{n} (g_{i} + \sum_{i=1}^{n} e_{i})$$

$$= A^{-\varepsilon(d)} \sum_{0 \le k \le d} \chi (G_{kr}(e_{i} D)) \prod_{k=1}^{n} A_{i}^{\frac{1}{3}} \int_{0 \le k \le d} A_{i}^{\frac{1}{3}}$$

$$= A^{-\varepsilon(d)} \sum_{0 \le k \le d} \chi (G_{kr}(e_{i} D)) \prod_{k=1}^{n} A_{i}^{\frac{1}{3}} \int_{0 \le k \le d} A_{i}^{\frac{1}{3}}$$

$$= A^{-\varepsilon(d)} \sum_{i=1}^{n} \chi (G_{kr}(e_{i} D)) \prod_{k=1}^{n} A_{i}^{\frac{1}{3}} \int_{0 \le k \le d} A_{i}^{\frac{1}{3}}$$

•

$$CC(D) = \frac{1}{A^{d}} \sum_{0 \le k \le d} \chi(G_{kr}(k, D)) \prod_{i=1}^{n} A_{i}^{\frac{1}{3}} \sum_{i=1}^{i} (d_{i} - k_{i})$$

$$= \frac{T(A_{i}^{\frac{1}{3}}) d_{j}}{T(A_{i}^{\frac{1}{3}})} \sum_{0 \le k \le d} \chi(G_{kr}(k, D)) \prod_{k=1}^{n} A_{i}^{\frac{1}{3}} \sum_{i=1}^{k} k_{j}^{\frac{1}{3}} \sum_{i=1}^{k} k_{j}^{\frac{1}{3}}$$

$$= A^{-E(d)} \sum_{0 \le k \le d} \chi(G_{kr}(k, D)) \prod_{k=1}^{n} A_{i}^{\frac{1}{3}} \int_{0 \le k \le d} A_{i}^{\frac{1}{3}}$$

$$= A^{-E(d)} \sum_{0 \le k \le d} \chi(G_{kr}(k, D)) \prod_{k=1}^{n} A_{i}^{\frac{1}{3}} \int_{0 \le k \le d} A_{i}^{\frac{1}{3}}$$

$$= A^{-E(d)} \sum_{0 \le k \le d} \chi(G_{kr}(k, D)) \prod_{k=1}^{n} A_{i}^{\frac{1}{3}} \int_{0 \le k \le d} A_{i}^{\frac{1}{3}}$$

understand Eld) as injective resolution.

 $0 \rightarrow D \rightarrow I_1 \rightarrow J_2 \rightarrow 0$

Look for Hall alg. theta function Ralg for the guiver representations

$$T(w) = \left\{ E \in \operatorname{Vap}(A : \operatorname{ang} g \operatorname{uvbiont} Obj. E \xrightarrow{} F \operatorname{satisfies} w(F) > 0 \right\}$$

$$F(w) = \left\{ E \in \operatorname{Vap}(A : \operatorname{ang} \operatorname{subobj}. A \operatorname{satisfies} w(A) \le 0 \right\}.$$

Thus(16)
$$\mathcal{V}_{m} = \mathcal{G}_{\mathcal{F}(m)}(D) A^{m}$$
, $m = \mathcal{E}(d_{1}mD)$, $m \operatorname{inclustor}$ complex
where objects in $\mathcal{G}_{\mathcal{F}(m)}(D)$ are reprise $E \in \mathcal{F}(m)$
& E is equipped, why on inelustron into D.

Thur(1b)
$$\mathcal{V}_{m} = \mathcal{G}_{\mathcal{F}(m)}(D) A^{m}$$
, $m = \mathcal{E}(dum D)$, $m = \operatorname{inclustor}(complex)$
where objects in $\mathcal{G}_{\mathcal{F}(m)}(D)$ are repus $\mathcal{E} \in \mathcal{F}(m)$
& \mathcal{E} is equipped, using an inelastion into D .
apply Encrement \mathcal{X}
 $\mathcal{V}_{m} = A^{-\varepsilon(D)} \sum_{\substack{o \leq e \leq d}} \mathcal{X}(Gr(e, D)) A^{p * re})$
 $o \leq e \leq d$
 \Rightarrow the CC-formula

$\mathcal{V}_m = A^{-\varepsilon}$	$D) \sum_{0 \leq \ell \leq d} \chi(Gr($	e, D)) A ^{p*re)}	for auguric	guver

•

We can generalize this versure to
quiver
$$(Q, w)$$
, $W = \sum cyrres$.

Detour .:

How about Q is not in positive chamber?

Detour.:

How about Q is not in positive mamber?

if there exists a pain going from
$$m$$
 to Q by good crossing.
then $V_{m,Q}$ is obtained by conj. of $(F(Q)^{-1}/F(m))$ on A^{m}

Detour.:

How about Q is not in positive mamber?

if there exists a parn going from
$$m$$
 to Q by good crossing.
then $V_{m,Q}$ is obtained by $conj. of [F(Q)] / F(m)$ on A^m

The
$$V_{m,Q} = G_{F(m)(F(Q)}(D) A^{m}$$
 $m = \mathcal{E}(D)$
where $G_{F(m)(F(D)}(D)$ contains obj. as rep E s.t. EG F(m)(F(Q))
and $ker(E \rightarrow D) \in F(Q)$

Detour.:

How about Q is not in positive mamber?

if there exists a parn going from
$$m$$
 to Q by good crossing.
then $\mathcal{V}_{m,Q}$ is obtained by $conj. \partial f \left[F(Q)^{-1}\right]_{F}(m)$ on A^{m}

$$\frac{\text{Thm}}{\text{Thm}} \quad \mathcal{V}_{m,Q} = \mathcal{G}_{F(m) \setminus F(Q)}(D) \quad A^{m} \qquad m = \mathcal{E}(D)$$
where $\mathcal{G}_{F(m) \setminus F(D)}(\text{contains obj. as rep E s.t. Ec }F(m) \setminus F(Q)$
and $\text{Ker}(E \to D) \in F(Q)$

What about broken line?

•

$$\frac{Thm(-)p_{\mathcal{F}_{i}} + (A^{-\varepsilon(d)}) = G_{i}A^{-\varepsilon(d)}}{Where obj. in G_{i} are [F_{i}^{\lambda} \rightarrow D]}$$

$$With no kund of dim vector f_{i}$$

Apply
$$X \rightarrow get \sum_{i} Gr(\lambda, Hom(F, D))$$

Which agrees who would wall - crossing
Since mult: λ_r , define $V_i := F_i \lambda_i$

k-th bending
from
$$(k-i)$$
, have $0 \leq V_1 \leq \cdots \leq V_{k-1}$, $V_i / v_{i-1} = F_i^{\lambda_i}$

