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Notation

For the purposes of this talk, please assume that:

k = a field of characteristic p, algebraically closed,

G = a finite group,

all kG -modules are finitely generated.

If M is a kG -module, let Ω(M) denote the kernel of a projective
cover PM → M and let Ω−1(M) be the cokernel of an injective
hull M → IM .

For n > 1, let Ωn(M) = Ω(Ωn−1(M)) and
Ω−n(M) = Ω−1(Ω1−n(M)).

Recall that projective modules are injective and vice versa.
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Things We Need To Know.

For M a kG -module, let M∗ = Homk(M, k), the k-dual.

On the category of kG -modules there is a tensor product
⊗ = ⊗k with action of g ∈ G on M ⊗ N given by
g(m ⊗ n) = gm ⊗ gn.

Homk(M,N) ∼= M∗ ⊗ N. [(λ⊗ n)(m) = λ(m)n]

There is a trace map Tr : M∗ ⊗M → k given by
λ⊗m 7→ λ(m).

There is a unit map u : k → M∗ ⊗M ∼= Homk(M,M) that
sends 1 ∈ k to IdM ∈ HomkG (M,M)

Note that if p does not divide the dimension of M, then Tr is split
by the unit map and k is a direct summand of M∗ ⊗M.

k
u

// M∗ ⊗M
Tr

// k
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Basic results.

Theorem: (Benson-Carlson, 1986) Assume that k is algebraically
closed. Suppose that M and N are indecomposable modules and
that k is a direct summand of M ⊗ N. Then

1 Dim(M) is not divisible by p,

2 N ∼= M∗,

3 the multiplicity of k as a direct summand of M⊗N is one, and

4 the trace map Tr : M ⊗M∗ → k is split.
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Basic results.

Theorem: (Benson-Carlson, 1986) Assume that k is algebraically
closed. Suppose that M and N are indecomposable modules and
that k is a direct summand of M ⊗ N. Then

1 Dim(M) is not divisible by p,

2 N ∼= M∗,

3 the multiplicity of k as a direct summand of M⊗N is one, and

4 the trace map Tr : M ⊗M∗ → k is split.

Corollary Suppose that M and N are kG -modules such that M is
indecomposable and has dimension divisible by p. Then any direct
summand of M ⊗ N has dimension divisible by p.
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The Stable Category.

The stable category stmod(kG ) has

objects: Finitely generated kG -modules

and morphisms (for M and N objects):

HomkG (M,N) =
HomkG (M,N)

PHomkG (M,N)

where PHom means homomorphisms that factor through
projectives modules.

This is a tensor triangulated category. The triangles correspond to
exact sequences. The shift functor is Ω−1.

Note that Extn(M,N) ∼= HomkG (Ω
n(M),N).
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Relative projectivity

Definition Suppose that M is a kG -module. We say that a
kG -module X is relatively M-projective (or just M-projective) if X
is a direct summand of M ⊗ U for some kG -module U. We say
that a map ϕ : X → Y is M-projective if it factors through an
M-projective module.

Definition: (C-Peng-Wheeler) We say that a module X is virtually
M-projective if, for n sufficiently large, any homomorphism
Ωn(X ) → X factors through an M-projective module. The degree
of virtual M-projectivity of X is the least such n.
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Example

Lemma: Suppose that p > 2, there exists a kG -module M such
that k is virtually M-projective, but not M-projective.

Proof: Let n be the least common multiple of the degrees of the
nonnilpotent generators H∗(G , k) ∼= Ext∗

kG
(k , k). Let

M = Ωn(k)/S

where S is a one-dimensional submodule of Ωn(k). Then we check

1 M is indecomposable, (takes a little proof)

2 p divides the dimension of M, (because n is even)

3 every homomorphism Ωn(k) → k factors through M.
(because S is in the radical of Ωn(M))

So, (1) and (2) imply that k is not M-projective, while (3) implies
that it is virtually M-projective.
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Support varieties

For M a kG -module, the ring Ext∗
kG

(M,M) is a finitely generated
module over the cohomology ring H∗(G , k) ∼= Ext∗

kG
(k , k). Let

J(M) be the annihilator of Ext∗
kG

(M,M) in H∗(G , k).

Let VG (k) = Proj(H∗(G , k)) be the spectrum of homogeneous
prime ideals in H∗(G , k).

Let VG (M) be the variety of J(M), the set of all prime ideals that
contain J(M).

Proposition: Suppose that X is virtually M-projective. Then
VG (X ) ⊆ VG (M).

Theorem: (Benson-C-Rickard) If VG (M) = VG (k) then M

generates stmod(kG ) in the sense that every module in the
category is a direct summand of some sequence of extensions of
the modules Ωn(M).
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One question

Question: Suppose that M has the property that
VG (M) = VG (k) (so that M generates stmod(kG )). Is it
necessary that k is virtually M-projective?
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One question

Question: Suppose that M has the property that
VG (M) = VG (k) (so that M generates stmod(kG )). Is it
necessary that k is virtually M-projective?

Answer: No!

Well, not in general. Assume p > 2. There exist technical criteria
for such a situation in the case that G is elementary abelian of
order p2. Such module inflate to modules that also imply a “no”
for larger elementary abelian p-groups.
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Concerning degrees of virtual projectivity

Proposition: Suppose that k is virtually M-projective of degree d .
Let H be a subgroup of G , and assume that H∗(H, k) is generated
as a module over R = resG ,H(H

∗(G , k)) by elements in degree at
most n. Then kH is virtually M↓H -projective in degree at most
d + n.
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Concerning degrees of virtual projectivity

Proposition: Suppose that k is virtually M-projective of degree d .
Let H be a subgroup of G , and assume that H∗(H, k) is generated
as a module over R = resG ,H(H

∗(G , k)) by elements in degree at
most n. Then kH is virtually M↓H -projective in degree at most
d + n.

Proposition: Suppose that X is virtually L-projective of degree d

and virtually M-projective of degree e. Let n be a number such
that the ring Ext∗

kG
(X ,X ) is generated as a k-algebra in degrees at

most n. Then X is vitually L⊗M-projective of degree at most
d + e + n.
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ATI

Definition: An additive tensor ideal C is a full subcategory that is
closed under arbitrary tensor products (meaning that if X is in C,
then X ⊗ Y is in C for any object Y ) and finite direct sums and
direct summands.

Note that an additive tensor ideal is not assumed to be
triangulated - that is, not closed under extensions.

Example: We say a module is p-divisible if its dimension is
divisible by p. (Or the long version is that M is p-divisible if all of
its direct summands after any field extension have dimension
divisible by p.) The collection of p-divisible modules is an additive
tensor ideal. In fact, it is a prime ATI.

Example: Fix a natrual number n. The full subcategory of all M
such that k is not virtually M-projective of degree more than n is
an additive tensor ideal.

Jon F. Carlson University of Georgia Virtual Projectivity



Kelly Radical

The radical of an additive category C is the ideal of morphisms

RadC(M,N) = {f : M → N| for all g : N → M, 1M−gf is invertible}.

When M = N, the ideal RadC(M,M) is the Jacobson radical of the
ring EndC(M).

Theorem (Balmer-C.) The tensor closure of the radical of
stmod(kG ) is the additive ideal given for indecomposable modules
M and N by the formula:

1 If M 6≃ N, then I(M,N) := HomC(M,N).

2 If M is p-divisible, then I(M,M) := HomC(M,M).

3 If M is not p-divisible, then I(M,M) := RadC(M,M).

Corollary The Kelly radical of stmod(kG ) is a tensor ideal if
and only if G is cyclic of order p.
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More ATI

Suppose that H is a subgroup of G and we consider the relative
stable category, stmodH(kG ), where the morphisms between
objects are the standard homomorphisms modulo those that factor
through an H-projective module (H-projective means induced from
H). This is a triangulated category with triangles corresponding to
exact sequence that are split on restriction to H.

Theorem: Suppose that J ⊆ H and that C is an ATI in
stmod(kJ). Let L be the full subcategory of stmodH(kG ) of all
modules whose restriction to J is in C. Then L is a thick
subcategory of stmodH(kG ) and it is prime if C is prime.
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Thanks

Thanks!
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