VIRTUAL PROJECTIVITY

Jon F. Carlson University of Georgia

November 19, 2017

Iowa City

Joint work with Dave Benson

JON F. CARLSON UNIVERSITY OF GEORGIA

VIRTUAL PROJECTIVITY

NOTATION

For the purposes of this talk, please assume that:

- k = a field of characteristic p, algebraically closed,
- G = a finite group,
- all kG-modules are finitely generated.

If M is a kG-module, let $\Omega(M)$ denote the kernel of a projective cover $P_M \to M$ and let $\Omega^{-1}(M)$ be the cokernel of an injective hull $M \to I_M$.

For n > 1, let $\Omega^n(M) = \Omega(\Omega^{n-1}(M))$ and $\Omega^{-n}(M) = \Omega^{-1}(\Omega^{1-n}(M))$.

Recall that projective modules are injective and vice versa.

(日本) (日本) (日本)

THINGS WE NEED TO KNOW.

For *M* a *kG*-module, let $M^* = \text{Hom}_k(M, k)$, the *k*-dual.

- On the category of kG-modules there is a tensor product $\otimes = \otimes_k$ with action of $g \in G$ on $M \otimes N$ given by $g(m \otimes n) = gm \otimes gn$.
- $\operatorname{Hom}_k(M,N) \cong M^* \otimes N.$ $[(\lambda \otimes n)(m) = \lambda(m)n]$
- There is a trace map $\operatorname{Tr} : M^* \otimes M \to k$ given by $\lambda \otimes m \mapsto \lambda(m)$.
- There is a unit map u : k → M* ⊗ M ≅ Hom_k(M, M) that sends 1 ∈ k to Id_M ∈ Hom_kG(M, M)

Note that if p does not divide the dimension of M, then Tr is split by the unit map and k is a direct summand of $M^* \otimes M$.

$$k \xrightarrow{u} M^* \otimes M \xrightarrow{\mathsf{Tr}} k$$

Theorem: (Benson-Carlson, 1986) Assume that k is algebraically closed. Suppose that M and N are indecomposable modules and that k is a direct summand of $M \otimes N$. Then

• Dim(M) is not divisible by p,

$$N \cong M^*,$$

③ the multiplicity of k as a direct summand of $M \otimes N$ is one, and

() the trace map Tr : $M \otimes M^* \to k$ is split.

Theorem: (Benson-Carlson, 1986) Assume that k is algebraically closed. Suppose that M and N are indecomposable modules and that k is a direct summand of $M \otimes N$. Then

• Dim(M) is not divisible by p,

$$N \cong M^*,$$

- **③** the multiplicity of k as a direct summand of $M \otimes N$ is one, and
- **()** the trace map Tr : $M \otimes M^* \to k$ is split.

Corollary Suppose that M and N are kG-modules such that M is indecomposable and has dimension divisible by p. Then any direct summand of $M \otimes N$ has dimension divisible by p.

▲圖▶ ▲国▶ ▲国▶

THE STABLE CATEGORY.

The stable category **stmod**(*kG*) has objects: Finitely generated *kG*-modules and morphisms (for *M* and *N* objects): $\underline{Hom}_{kG}(M, N) = \frac{Hom_{kG}(M, N)}{PHom_{kG}(M, N)}$

where PHom means homomorphisms that factor through projectives modules.

This is a *tensor* triangulated category. The triangles correspond to exact sequences. The shift functor is Ω^{-1} .

マロト マヨト マヨト 二日

Note that $\operatorname{Ext}^{n}(M, N) \cong \operatorname{Hom}_{kG}(\Omega^{n}(M), N).$

Definition Suppose that M is a kG-module. We say that a kG-module X is relatively M-projective (or just M-projective) if X is a direct summand of $M \otimes U$ for some kG-module U. We say that a map $\varphi : X \to Y$ is M-projective if it factors through an M-projective module.

Definition: (C-Peng-Wheeler) We say that a module X is virtually M-projective if, for n sufficiently large, any homomorphism $\Omega^n(X) \to X$ factors through an M-projective module. The degree of virtual M-projectivity of X is the least such n.

・ 同 ト ・ ヨ ト ・ ヨ ト

EXAMPLE

Lemma: Suppose that p > 2, there exists a kG-module M such that k is virtually M-projective, but not M-projective.

Proof: Let *n* be the least common multiple of the degrees of the nonnilpotent generators $H^*(G, k) \cong Ext^*_{kG}(k, k)$. Let

$$M = \Omega^n(k)/S$$

where S is a one-dimensional submodule of $\Omega^n(k)$. Then we check

- *M* is indecomposable, (takes a little proof)
- \bigcirc p divides the dimension of M, (because n is even)
- every homomorphism Ωⁿ(k) → k factors through M. (because S is in the radical of Ωⁿ(M))

So, (1) and (2) imply that k is not M-projective, while (3) implies that it is virtually M-projective.

SUPPORT VARIETIES

For M a kG-module, the ring $\operatorname{Ext}_{kG}^*(M, M)$ is a finitely generated module over the cohomology ring $\operatorname{H}^*(G, k) \cong \operatorname{Ext}_{kG}^*(k, k)$. Let J(M) be the annihilator of $\operatorname{Ext}_{kG}^*(M, M)$ in $\operatorname{H}^*(G, k)$.

Let $V_G(k) = \operatorname{Proj}(H^*(G, k))$ be the spectrum of homogeneous prime ideals in $H^*(G, k)$.

Let $V_G(M)$ be the variety of J(M), the set of all prime ideals that contain J(M).

Proposition: Suppose that X is virtually M-projective. Then $V_G(X) \subseteq V_G(M)$.

Theorem: (Benson-C-Rickard) If $V_G(M) = V_G(k)$ then M generates **stmod**(kG) in the sense that every module in the category is a direct summand of some sequence of extensions of the modules $\Omega^n(M)$.

→ 課 ▶ ★ 国 ▶ ★ 国 ▶ 二 国

Question: Suppose that *M* has the property that $V_G(M) = V_G(k)$ (so that *M* generates **stmod**(*kG*)). Is it necessary that *k* is virtually *M*-projective?

JON F. CARLSON UNIVERSITY OF GEORGIA VIRTUAL PROJECTIVITY

▲□ → ▲ □ → ▲ □ →

Question: Suppose that *M* has the property that $V_G(M) = V_G(k)$ (so that *M* generates **stmod**(*kG*)). Is it necessary that *k* is virtually *M*-projective?

Answer: No!

JON F. CARLSON UNIVERSITY OF GEORGIA VIRTUAL PROJECTIVITY

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Question: Suppose that *M* has the property that $V_G(M) = V_G(k)$ (so that *M* generates **stmod**(*kG*)). Is it necessary that *k* is virtually *M*-projective?

Answer: No!

Well, not in general. Assume p > 2. There exist technical criteria for such a situation in the case that *G* is elementary abelian of order p^2 . Such module inflate to modules that also imply a "no" for larger elementary abelian *p*-groups.

Proposition: Suppose that *k* is virtually *M*-projective of degree *d*. Let *H* be a subgroup of *G*, and assume that $H^*(H, k)$ is generated as a module over $R = \operatorname{res}_{G,H}(H^*(G, k))$ by elements in degree at most *n*. Then k_H is virtually $M_{\downarrow H}$ -projective in degree at most d + n.

Proposition: Suppose that *k* is virtually *M*-projective of degree *d*. Let *H* be a subgroup of *G*, and assume that $H^*(H, k)$ is generated as a module over $R = \operatorname{res}_{G,H}(H^*(G, k))$ by elements in degree at most *n*. Then k_H is virtually $M_{\downarrow H}$ -projective in degree at most d + n.

Proposition: Suppose that X is virtually L-projective of degree d and virtually M-projective of degree e. Let n be a number such that the ring $\text{Ext}_{kG}^*(X, X)$ is generated as a k-algebra in degrees at most n. Then X is vitually $L \otimes M$ -projective of degree at most d + e + n.

- (回) (回) (回) (回) (回)

Definition: An additive tensor ideal \mathcal{C} is a full subcategory that is closed under arbitrary tensor products (meaning that if X is in \mathcal{C} , then $X \otimes Y$ is in \mathcal{C} for any object Y) and finite direct sums and direct summands.

Note that an additive tensor ideal is not assumed to be triangulated - that is, not closed under extensions.

Example: We say a module is *p*-divisible if its dimension is divisible by *p*. (Or the long version is that *M* is *p*-divisible if all of its direct summands after any field extension have dimension divisible by *p*.) The collection of *p*-divisible modules is an additive tensor ideal. In fact, it is a prime ATI.

Example: Fix a natrual number n. The full subcategory of all M such that k is not virtually M-projective of degree more than n is an additive tensor ideal.

▲□→ < □→ < □→</p>

Kelly Radical

The radical of an additive category $\ensuremath{\mathbb{C}}$ is the ideal of morphisms

 $\operatorname{Rad}_{\mathbb{C}}(M, N) = \{f : M \to N | \text{ for all } g : N \to M, \ 1_M - gf \text{ is invertible} \}.$

When M = N, the ideal $\operatorname{Rad}_{\mathbb{C}}(M, M)$ is the Jacobson radical of the ring $\operatorname{End}_{\mathbb{C}}(M)$.

Theorem (Balmer-C.) The tensor closure of the radical of stmod(kG) is the additive ideal given for indecomposable modules M and N by the formula:

If
$$M \not\simeq N$$
, then $\mathfrak{I}(M, N) := \operatorname{Hom}_{\mathfrak{C}}(M, N)$.

- **2** If *M* is *p*-divisible, then $\mathcal{I}(M, M) := \text{Hom}_{\mathcal{C}}(M, M)$.
- So If M is not p-divisible, then $\mathcal{I}(M, M) := \operatorname{Rad}_{\mathcal{C}}(M, M)$.

Corollary The Kelly radical of stmod(kG) is a tensor ideal if and only if G is cyclic of order p.

Suppose that H is a subgroup of G and we consider the relative stable category, $stmod_H(kG)$, where the morphisms between objects are the standard homomorphisms modulo those that factor through an H-projective module (H-projective means induced from H). This is a triangulated category with triangles corresponding to exact sequence that are split on restriction to H.

Theorem: Suppose that $J \subseteq H$ and that \mathcal{C} is an ATI in $\mathbf{stmod}(kJ)$. Let \mathcal{L} be the full subcategory of $\mathbf{stmod}_H(kG)$ of all modules whose restriction to J is in \mathcal{C} . Then \mathcal{L} is a thick subcategory of $\mathbf{stmod}_H(kG)$ and it is prime if \mathcal{C} is prime.

▲帰▶ ▲屋▶ ▲屋▶

Thanks!

JON F. CARLSON UNIVERSITY OF GEORGIA

VIRTUAL PROJECTIVITY

<ロ> (日) (日) (日) (日) (日)

Э