A first look at homotopy dimer algebras on surfaces with boundary

Charlie Beil (joint with Karin Baur)

University of Graz

Conference on Geometric Methods in Representation Theory University of Iowa November 2017 A dimer quiver Q is a quiver that embeds into a compact surface M such that each connected component of M \ Q is simply connected and bounded by an oriented cycle, called a unit cycle.

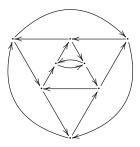
- A dimer quiver Q is a quiver that embeds into a compact surface M such that each connected component of M \ Q is simply connected and bounded by an oriented cycle, called a unit cycle.
- A *perfect matching* D of Q is a subset of arrows such that each unit cycle contains precisely one arrow in D.

- A dimer quiver Q is a quiver that embeds into a compact surface M such that each connected component of M \ Q is simply connected and bounded by an oriented cycle, called a unit cycle.
- A *perfect matching* D of Q is a subset of arrows such that each unit cycle contains precisely one arrow in D.
- A *boundary* of Q is a set \mathcal{B} of connected components of $M \setminus Q$.

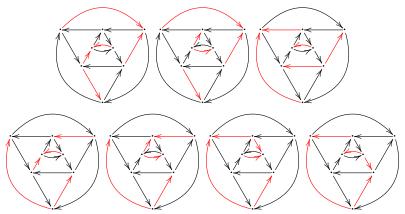
- A dimer quiver Q is a quiver that embeds into a compact surface M such that each connected component of M \ Q is simply connected and bounded by an oriented cycle, called a unit cycle.
- A *perfect matching* D of Q is a subset of arrows such that each unit cycle contains precisely one arrow in D.
- A *boundary* of Q is a set \mathcal{B} of connected components of $M \setminus Q$.
- A B-perfect matching D is a set of arrows such that each unit cycle, which is not the boundary of a component in B, contains precisely one arrow in D.
 Denote by P_B the set of B-perfect matchings.

4 E 6 4 E 6

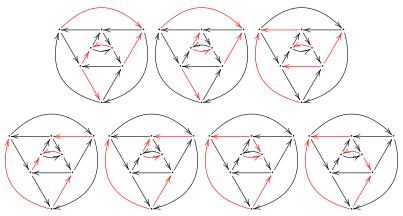
Let Q be the quiver on the sphere S^2 ,



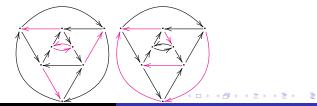
The outermost cycle of Q is a unit cycle since Q is on S^2 . Let \mathcal{B} consist of the two faces bounded by the innermost and outermost unit cycles. 14 perfect matchings:



14 perfect matchings:



4 boundary perfect matchings:



A first look at homotopy dimer algebras on surfaces

Homotopy algebras with boundary

Consider the algebra homomorphism

$$au: \mathsf{k} \mathsf{Q} o \mathsf{M}_{|\mathcal{Q}_0|} \left(\mathsf{k}[\mathsf{x}_D \mid D \in \mathcal{P}_\mathcal{B}]
ight)$$

defined on the vertices $e_i \in Q_0$ and arrows $a \in Q_1$ by

$$e_i \mapsto e_{ii}$$
 and $a \mapsto \prod_{a \in D \in \mathcal{P}_B} x_D \cdot e_{h(a),t(a)},$

and extended multiplicatively to paths and k-linearly to kQ. The homotopy algebra of Q with boundary \mathcal{B} is then the quotient

$$A := kQ / \ker \tau.$$

Homotopy algebras with boundary

Consider the algebra homomorphism

$$au: \mathsf{k} \mathsf{Q} o \mathsf{M}_{|\mathcal{Q}_0|} \, (\mathsf{k}[\mathsf{x}_D \mid D \in \mathcal{P}_\mathcal{B}])$$

defined on the vertices $e_i \in Q_0$ and arrows $a \in Q_1$ by

$$e_i \mapsto e_{ii}$$
 and $a \mapsto \prod_{a \in D \in \mathcal{P}_{\mathcal{B}}} x_D \cdot e_{h(a),t(a)},$

and extended multiplicatively to paths and k-linearly to kQ. The homotopy algebra of Q with boundary \mathcal{B} is then the quotient

$$A := kQ / \ker \tau.$$

We can view A as a tiled matrix algebra by identifying A with its image in $M_{|Q_0|}(k[x_D])$.

Homotopy algebras with boundary

Consider the algebra homomorphism

$$au: \mathsf{k} \mathsf{Q} o \mathsf{M}_{|\mathcal{Q}_0|} \left(\mathsf{k}[\mathsf{x}_D \mid D \in \mathcal{P}_\mathcal{B}]
ight)$$

defined on the vertices $e_i \in Q_0$ and arrows $a \in Q_1$ by

$$e_i \mapsto e_{ii}$$
 and $a \mapsto \prod_{a \in D \in \mathcal{P}_{\mathcal{B}}} x_D \cdot e_{h(a),t(a)},$

and extended multiplicatively to paths and k-linearly to kQ. The homotopy algebra of Q with boundary \mathcal{B} is then the quotient

$$A := kQ / \ker \tau.$$

We can view A as a tiled matrix algebra by identifying A with its image in $M_{|Q_0|}(k[x_D])$. In our example, $A \subset M_8(k[x_1, ..., x_{18}])$. Let B be an integral domain and a k-algebra. Let

$$A = \left[A^{ij}
ight] \subset M_d(B)$$

be a tiled matrix algebra; that is, each diagonal entry $A^i := A^{ii}$ is a unital subalgebra of B.

Definition

Set

$$R := k \left[\cap_{i=1}^d A^i
ight] \quad ext{ and } \quad S := k \left[\cup_{i=1}^d A^i
ight].$$

We call S the *cycle algebra* of A.

Let B be an integral domain and a k-algebra. Let

$$A = \left[A^{ij}
ight] \subset M_d(B)$$

be a tiled matrix algebra; that is, each diagonal entry $A^i := A^{ii}$ is a unital subalgebra of B.

Definition

Set

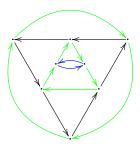
$$R := k \left[\cap_{i=1}^{d} A^{i} \right]$$
 and $S := k \left[\cup_{i=1}^{d} A^{i} \right]$

We call S the *cycle algebra* of A.

Proposition

The center of a homotopy algebra A is R.

Consider the cycles:

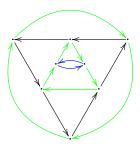


Let $\alpha,\,\beta,\,\sigma$ be the single nonzero matrix entries of the $\tau\text{-images}$ of the green, blue, and unit cycles respectively. Then

$$S = k[\alpha, \beta, \sigma]/(\alpha\beta - \sigma^2),$$

$$R = k[\alpha, \sigma] + (\alpha, \sigma^2)S.$$

Consider the cycles:



Let $\alpha,\,\beta,\,\sigma$ be the single nonzero matrix entries of the $\tau\text{-images}$ of the green, blue, and unit cycles respectively. Then

$$S = k[\alpha, \beta, \sigma]/(\alpha\beta - \sigma^2),$$

$$R = k[\alpha, \sigma] + (\alpha, \sigma^2)S.$$

 \implies *R* is nonnoetherian and *R* \neq *S* ...coincidence?

Theorem

Let A be a homotopy algebra with center R. Suppose there are monomials in S which are relatively prime in $k[x_D]$. TFAE:

- **(**) Each arrow annihilates a simple A-module of dimension 1^{Q_0} .
- **2** A is a dimer algebra (i.e., the relations come from a potential).
- R = S (i.e., $A^{i} = A^{j}$ for each $i, j \in Q_{0}$).
- A is noetherian.
- Is noetherian.
- A is a finitely generated R-module.

Let $A = [A^{ij}] \subset M_d(B)$ be a tiled matrix algebra, and let $\mathfrak{q} \in \operatorname{Spec} S$.

∃ ► < ∃ ►</p>

Let $A = [A^{ij}] \subset M_d(B)$ be a tiled matrix algebra, and let $\mathfrak{q} \in \operatorname{Spec} S$.

• The cyclic localization of A at q is

$$A_{\mathfrak{q}} := \left\langle \begin{bmatrix} A_{\mathfrak{q} \cap A^{1}}^{1} & A^{12} & \cdots & A^{1d} \\ A^{21} & A_{\mathfrak{q} \cap A^{2}}^{2} & & \\ \vdots & & \ddots & \\ A^{d1} & & & A_{\mathfrak{q} \cap A^{d}}^{d} \end{bmatrix} \right\rangle \subset M_{d}(\operatorname{Frac} B).$$

Let $A = [A^{ij}] \subset M_d(B)$ be a tiled matrix algebra, and let $\mathfrak{q} \in \operatorname{Spec} S$.

• The cyclic localization of A at q is

$$A_{\mathfrak{q}} := \left\langle \begin{bmatrix} A_{\mathfrak{q} \cap A^{1}}^{1} & A^{12} & \cdots & A^{1d} \\ A^{21} & A_{\mathfrak{q} \cap A^{2}}^{2} & & \\ \vdots & & \ddots & \\ A^{d1} & & & A_{\mathfrak{q} \cap A^{d}}^{d} \end{bmatrix} \right\rangle \subset M_{d}(\operatorname{Frac} B).$$

If R = S, then $A_{\mathfrak{q}} \cong A \otimes_R R_{\mathfrak{q}}$.

Let $A = [A^{ij}] \subset M_d(B)$ be a tiled matrix algebra, and let $\mathfrak{q} \in \operatorname{Spec} S$.

• The cyclic localization of A at q is

$$A_{\mathfrak{q}} := \left\langle \begin{bmatrix} A_{\mathfrak{q} \cap A^{1}}^{1} & A^{12} & \cdots & A^{1d} \\ A^{21} & A_{\mathfrak{q} \cap A^{2}}^{2} & & \\ \vdots & & \ddots & \\ A^{d1} & & & A_{\mathfrak{q} \cap A^{d}}^{d} \end{bmatrix} \right\rangle \subset M_{d}(\operatorname{Frac} B).$$

If R = S, then $A_{\mathfrak{q}} \cong A \otimes_R R_{\mathfrak{q}}$.

• The *residue module* of A at q is the left A_q -module,

$$A_{\mathfrak{q}}/\mathfrak{q} := igoplus_{1 \leq i \leq d} A_{\mathfrak{q}} e_i / \left(\mathfrak{q} \cap e_i A_{\mathfrak{q}} e_i
ight).$$

æ

• • = • • =

Conjecture

If $q \in \operatorname{Spec} S$ is minimal over $q \cap R$, then A_q/q is semi-simple,

$$A_{\mathfrak{q}}/\mathfrak{q}\cong igoplus_{V\in\mathcal{S}_{\mathfrak{q}}}V,$$

where S_q is the set of all simple A_q -modules, up to isomorphism.

Conjecture

If $q \in \text{Spec } S$ is minimal over $q \cap R$, then A_q/q is semi-simple,

$$\mathcal{A}_{\mathfrak{q}}/\mathfrak{q}\cong igoplus_{V\in\mathcal{S}_{\mathfrak{q}}}V,$$

where S_q is the set of all simple A_q -modules, up to isomorphism.

• For each $V \in S_q$, the *simple idempotent* corresponding to V is

(

$$\epsilon_V := \sum_{i \in Q_0 : e_i V \neq 0} e_i.$$

By our conjecture,

$$\sum_{V\in\mathcal{S}_{\mathfrak{q}}}\epsilon_V=1_{\mathcal{A}}.$$

Conjecture

If $q \in \text{Spec } S$ is minimal over $q \cap R$, then A_q/q is semi-simple,

$$\mathcal{A}_{\mathfrak{q}}/\mathfrak{q}\cong igoplus_{V\in\mathcal{S}_{\mathfrak{q}}}V,$$

where S_q is the set of all simple A_q -modules, up to isomorphism.

• For each $V \in S_{\mathfrak{q}}$, the *simple idempotent* corresponding to V is

$$\epsilon_V := \sum_{i \in Q_0 : e_i V \neq 0} e_i.$$

By our conjecture,

$$\sum_{V\in\mathcal{S}_{\mathfrak{q}}}\epsilon_V=1_{\mathcal{A}}.$$

• For each boundary component b, let ε_b be the sum of the vertex idempotents around b.

Conjecture

• Let $q \in \text{Spec } S$ be minimal over $q \cap R$, let $V \in S_q$, and set $\epsilon := \epsilon_V$. Then for each $i \in Q_0$ satisfying $e_i \epsilon \neq 0$, we have

$$\epsilon A_{\mathfrak{q}} \epsilon \cong \operatorname{End}_{Z(\epsilon A_{\mathfrak{q}} \epsilon)} (\epsilon A_{\mathfrak{q}} e_i).$$

э

∃ ► < ∃ ►</p>

Conjecture

• Let $q \in \text{Spec } S$ be minimal over $q \cap R$, let $V \in S_q$, and set $\epsilon := \epsilon_V$. Then for each $i \in Q_0$ satisfying $e_i \epsilon \neq 0$, we have

$$\epsilon A_{\mathfrak{q}} \epsilon \cong \operatorname{End}_{Z(\epsilon A_{\mathfrak{q}} \epsilon)} (\epsilon A_{\mathfrak{q}} e_i).$$

If or each boundary component b, there is some q ∈ Spec S minimal over q ∩ R, and V ∈ S_q, such that the simple idempotent ε_V contains ε_b: ε_bε_V = ε_b.

Conjecture

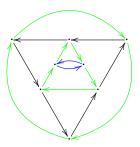
• Let $q \in \text{Spec } S$ be minimal over $q \cap R$, let $V \in S_q$, and set $\epsilon := \epsilon_V$. Then for each $i \in Q_0$ satisfying $e_i \epsilon \neq 0$, we have

$$\epsilon A_{\mathfrak{q}} \epsilon \cong \operatorname{End}_{Z(\epsilon A_{\mathfrak{q}} \epsilon)} (\epsilon A_{\mathfrak{q}} e_i).$$

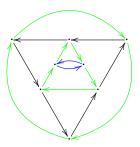
Prove the second se

Proposition

Both conjectures hold for our example.



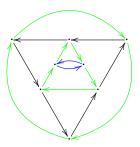
and α , β , σ are the single nonzero matrix entries of the τ -images of the green, blue, and unit cycles respectively.



and α , β , σ are the single nonzero matrix entries of the τ -images of the green, blue, and unit cycles respectively.

The two boundary components correspond to the two prime ideals,

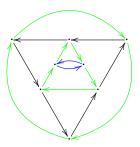
$$\begin{array}{lll} \mathfrak{q}_0 = (\alpha, \sigma) S & & \longleftrightarrow & \text{outer boundary} \\ \mathfrak{q}_1 = (\beta, \sigma) S & & \longleftrightarrow & \text{inner boundary} \end{array}$$



and α , β , σ are the single nonzero matrix entries of the τ -images of the green, blue, and unit cycles respectively.

The two boundary components correspond to the two prime ideals,

$$\begin{array}{lll} \mathfrak{q}_0 = (\alpha, \sigma)S & & & \text{outer boundary} \\ \mathfrak{q}_1 = (\beta, \sigma)S & & & \text{inner boundary} \\ \mathfrak{q}_2 = (\alpha, \beta, \sigma)S & & & \text{not minimal since } \mathfrak{q}_2 \cap R = \mathfrak{q}_0 \cap R. \end{array}$$



and α , β , σ are the single nonzero matrix entries of the τ -images of the green, blue, and unit cycles respectively.

The two boundary components correspond to the two prime ideals,

$$\begin{array}{lll} \mathfrak{q}_0 = (\alpha, \sigma)S & & & \text{outer boundary} \\ \mathfrak{q}_1 = (\beta, \sigma)S & & & \text{inner boundary} \\ \mathfrak{q}_2 = (\alpha, \beta, \sigma)S & & & \text{not minimal since } \mathfrak{q}_2 \cap R = \mathfrak{q}_0 \cap R. \end{array}$$

Thank you!