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Dimer quivers with boundary

A dimer quiver Q is a quiver that embeds into a compact
surface M such that each connected component of M \ Q is
simply connected and bounded by an oriented cycle, called a
unit cycle.

A perfect matching D of Q is a subset of arrows such that
each unit cycle contains precisely one arrow in D.

A boundary of Q is a set B of connected components of
M \ Q.

A B-perfect matching D is a set of arrows such that each unit
cycle, which is not the boundary of a component in B,
contains precisely one arrow in D.
Denote by PB the set of B-perfect matchings.
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An example

Let Q be the quiver on the sphere S2,
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The outermost cycle of Q is a unit cycle since Q is on S2.
Let B consist of the two faces bounded by the innermost and
outermost unit cycles.
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14 perfect matchings:

· · ·

·

· ·
· ·

oo

��

��

FF

FFoo

oo
FF

FF
��

��
77ww

��

ss

KK · · ·

·

· ·
· ·

oo

��

��

FF

FFoo

oo
FF

FF
��

��
77ww

��

ss

KK · · ·

·

· ·
· ·

oo

��

��

FF

FFoo

oo
FF

FF
��

��
77ww

��

ss

KK

· · ·

·

· ·
· ·

oo

��

��

FF

FFoo

oo
FF

FF
��

��
77ww

��

ss

KK · · ·

·

· ·
· ·

oo

��

��

FF

FFoo

oo
FF

FF
��

��
77ww

��

ss

KK · · ·

·

· ·
· ·

oo

��

��

FF

FFoo

oo
FF

FF
��

��
77ww

��

ss

KK · · ·

·

· ·
· ·

oo

��

��

FF

FFoo

oo
FF

FF
��

��
77ww

��

ss

KK

4 boundary perfect matchings:
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Homotopy algebras with boundary

Consider the algebra homomorphism

τ : kQ → M|Q0| (k[xD | D ∈ PB])

defined on the vertices ei ∈ Q0 and arrows a ∈ Q1 by

ei 7→ eii and a 7→
∏

a∈D∈PB

xD · eh(a),t(a),

and extended multiplicatively to paths and k-linearly to kQ. The
homotopy algebra of Q with boundary B is then the quotient

A := kQ/ ker τ.

We can view A as a tiled matrix algebra by identifying A with its
image in M|Q0|(k[xD ]).
In our example, A ⊂ M8 (k[x1, . . . , x18]).
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Let B be an integral domain and a k-algebra. Let

A =
[
Aij
]
⊂ Md(B)

be a tiled matrix algebra; that is, each diagonal entry Ai := Aii is a
unital subalgebra of B.

Definition

Set
R := k

[
∩di=1A

i
]

and S := k
[
∪di=1A

i
]
.

We call S the cycle algebra of A.

Proposition

The center of a homotopy algebra A is R.
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Consider the cycles:
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Let α, β, σ be the single nonzero matrix entries of the τ -images of
the green, blue, and unit cycles respectively.
Then

S = k[α, β, σ]/(αβ − σ2),
R = k[α, σ] + (α, σ2)S .

=⇒ R is nonnoetherian and R 6= S ...coincidence?
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Noetherianity criteria

Theorem

Let A be a homotopy algebra with center R. Suppose there are
monomials in S which are relatively prime in k[xD ].
TFAE:

1 Each arrow annihilates a simple A-module of dimension 1Q0 .

2 A is a dimer algebra (i.e., the relations come from a potential).

3 R = S (i.e., Ai = Aj for each i , j ∈ Q0).

4 A is noetherian.

5 R is noetherian.

6 A is a finitely generated R-module.

Charlie Beil (joint with Karin Baur) A first look at homotopy dimer algebras on surfaces



Local endomorphism ring structure

Let A =
[
Aij
]
⊂ Md(B) be a tiled matrix algebra, and let

q ∈ SpecS .

• The cyclic localization of A at q is

Aq :=

〈
A1
q∩A1 A12 · · · A1d

A21 A2
q∩A2

...
. . .

Ad1 Ad
q∩Ad


〉
⊂ Md(FracB).

If R = S , then Aq
∼= A⊗R Rq.

• The residue module of A at q is the left Aq-module,

Aq/q :=
⊕

1≤i≤d
Aqei/ (q ∩ eiAqei ) .
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Again let A be a homotopy algebra.

Conjecture

If q ∈ SpecS is minimal over q ∩ R, then Aq/q is semi-simple,

Aq/q ∼=
⊕
V∈Sq

V ,

where Sq is the set of all simple Aq-modules, up to isomorphism.

• For each V ∈ Sq, the simple idempotent corresponding to V is

εV :=
∑

i∈Q0 : eiV 6=0

ei .

By our conjecture, ∑
V∈Sq

εV = 1A.

• For each boundary component b, let εb be the sum of the vertex
idempotents around b.
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Conjecture

1 Let q ∈ SpecS be minimal over q ∩ R, let V ∈ Sq, and set
ε := εV . Then for each i ∈ Q0 satisfying eiε 6= 0, we have

εAqε ∼= EndZ(εAqε) (εAqei ) .

2 For each boundary component b, there is some q ∈ SpecS
minimal over q ∩ R, and V ∈ Sq, such that the simple
idempotent εV contains εb: εbεV = εb.

Proposition

Both conjectures hold for our example.
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and α, β, σ are the single nonzero matrix entries of the τ -images
of the green, blue, and unit cycles respectively.

The two boundary components correspond to the two prime ideals,

q0 = (α, σ)S ! outer boundary
q1 = (β, σ)S ! inner boundary
q2 = (α, β, σ)S not minimal since q2 ∩ R = q0 ∩ R.

Thank you!
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