Prime Spectra of 2-Categories
Joint work with Milen Yakimov

Kent Vashaw
Louisiana State University
kvasha1@lsu.edu

November 19, 2016
Overview

1. Category theory

2. The prime spectra

3. Applications to Richardson varieties
2-Categories

Definition

A 2-category is a category enriched over the category of small categories.

So a 2-category \mathcal{T} has:

- Objects, denoted by A_1, A_2 etc;
- 1-morphisms between objects, denoted f, g, h, etc; set of 1-morphisms from A_1 to A_2 denoted $\mathcal{T}(A_1, A_2)$;
- 2-morphisms between 1-morphisms, denoted α, β, γ, etc; set of 2-morphisms from f to g denoted $\mathcal{T}(f, g)$.

Prime Spectra of 2-Categories
Kent Vashaw
Category theory
The prime spectra
Applications to Richardson varieties
2-Categories

Composition of 1-morphisms:

\[A_1 \xrightarrow{f} A_2 \xrightarrow{g} A_3. \]

Vertical composition of 2-morphisms \(\alpha \circ \beta \):

\[
\begin{array}{ccc}
A_1 & \xrightarrow{f} & A_2 \\
\downarrow^{\alpha} & & \downarrow^{\beta} \\
A_1 & \xrightarrow{g} & A_2 \\
\downarrow^{h} & & \\
A_2 & \xrightarrow{f} & A_3
\end{array}
\]

Horizontal composition of 2-morphisms \(\alpha_2 \ast \alpha_1 \):

\[
\begin{array}{ccc}
A_1 & \xrightarrow{f_1} & A_2 \\
\downarrow^{\alpha_1} & & \downarrow^{\alpha_2} \\
A_1 & \xrightarrow{g_1} & A_2 \\
\downarrow^{g_2} & & \\
A_1 & \xrightarrow{f_2} & A_3
\end{array}
\]
2-Categories

\((\alpha_1 \circ \beta_1) \ast (\alpha_2 \circ \beta_2) = (\alpha_1 \ast \alpha_2) \circ (\beta_1 \ast \beta_2)\):
Exact categories

Definition

A 1-category is called **exact** if:

- It is additive;
- It has a set of distinguished short exact sequences

\[A_1 \rightarrow A_2 \rightarrow A_3 \]

that obey some axioms.
Exact categories

Some exact 1-categories:

- An additive category with short exact sequences defined by
 \[A_1 \to A_1 \oplus A_3 \to A_3; \]

- Abelian categories with traditional short exact sequences
 \((\ker g \cong \text{im } f); \)

- Full subcategories of abelian categories closed under extension.

Definition

A 2-category \(\mathcal{T} \) is exact if each set \(\mathcal{T}(A, B) \) is itself an exact 1-category.
Definition

Suppose \mathcal{C} is an exact 1-category. Then the **Grothendieck group** of \mathcal{C}, denoted $K_0(\mathcal{C})$, is defined by:

- Take the free abelian group on objects of \mathcal{C};
- For every exact sequence

$$0 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow 0,$$

quotient by the relation $[A_1] + [A_3] = [A_2]$.

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties
Definition

Suppose \mathcal{T} is an exact 2-category. Then the **Grothendieck group** of \mathcal{T}, denoted $K_0(\mathcal{T})$ is defined as the 1-category with:

- **Objects** the same as \mathcal{T};
- **Set of morphisms** from X to Y given by $K_0(\mathcal{T}(X, Y))$, the Grothendieck group of the 1-category $\mathcal{T}(X, Y)$.
- **Composition of morphisms** induced from composition of morphisms in \mathcal{T}.
Positive part of the Grothendieck group

Definition

The **positive part of the Grothendieck group** of an exact 1-category \mathcal{C}, denoted $K_0(\mathcal{C})_+$, is defined as the subset of $K_0(\mathcal{C})$ forming a monoid under addition generated by the indecomposable objects.

In other words, while the Grothendieck group has all elements of the form

$$\sum_i \lambda_i [b_i], \lambda_i \in \mathbb{Z},$$

the positive part of the Grothendieck group has elements of the form

$$\sum_i \lambda_i [b_i], \lambda_i \in \mathbb{N}.$$
Definition

The positive part of the Grothendieck group of an exact 2-category \mathcal{T}, denoted $K_0(\mathcal{T})_+$, has the same objects as \mathcal{T}, with hom spaces $K_0(\mathcal{T})_+(X, Y)$ defined by $K_0(\mathcal{T}(X, Y))_+$.
Strong categorification

- Let A an algebra with orthogonal idempotents e_i with $1 = e_1 + e_2 + ... + e_n$.
- $A = \bigoplus e_i A e_j$.
- Consider A as a category: an object for each e_i, set of morphisms from i to j given by $e_i A e_j$.
- Composition of morphisms given by multiplication.
Strong categorification

\[K_0(T) \xrightarrow{\text{view as an algebra}} A \]
Strong categorification

Definition

We call B_+ a $\mathbb{Z}_+\text{-ring}$ if B_+ has a basis (as a monoid) $\{b_i\}$ with relations $b_ib_j = \sum m_{i,j}^k b_k$ where all coefficients are positive. Elements are all positive linear combinations of basis elements, multiplication is extended from basis elements.

So we can view Grothendieck groups of 2-categories as \mathbb{Z}-algebras, and positive Grothendieck groups as \mathbb{Z}_+-rings.
Ideals

Definition

Let \mathcal{T} be an exact 2-category where composition of 1-morphisms is an exact bifunctor. We call \mathcal{I} a thick ideal of \mathcal{T} if:

- \mathcal{I} is a full subcategory of \mathcal{T} such that if in $\mathcal{T}(X,Y)$ we have an exact sequence of 1-morphisms
 \[0 \to f_1 \to f_2 \to f_3 \to 0, \]
 then f_2 is in \mathcal{I} if and only if f_1 and f_2 are in \mathcal{I};

- \mathcal{I} is an ideal: if $f \in (X,Y)$ is in \mathcal{I} and $g \in \mathcal{T}(Y,Z)$ then $g \circ f \in \mathcal{I}$; and if $h \in \mathcal{T}(W,X)$ then $f \circ h \in \mathcal{I}$.
Ideals

Definition

Suppose \(\mathcal{M} \) is any subset of 1-morphisms and 2-morphisms of a 2-category \(\mathcal{T} \). Then we define the **thick ideal generated by** \(\mathcal{M} \), denoted \(\langle \mathcal{M} \rangle \), to be the smallest thick ideal that contains \(\mathcal{M} \), which is the intersection of all thick ideals containing \(\mathcal{M} \).

Definition

Suppose \(B_+ \) is a \(\mathbb{Z}_+ \)-ring. Then \(I \subset B_+ \) is a **thick ideal** if \(a + b \) is in \(I \) if and only if \(a \) and \(b \) are in \(I \), and we also have that if \(i \) is in \(I \), then \(ai \) and \(ia \) are in \(I \) for every \(a \in B_+ \).
Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties

Prime and completely prime ideals

Definition

We call \(\mathcal{P} \) a **prime** of \(\mathcal{T} \) if \(\mathcal{P} \) is a thick ideal of \(\mathcal{T} \) such that if \(\mathcal{I} \) and \(\mathcal{J} \) are thick ideals in \(\mathcal{T} \), then if \(\mathcal{I} \circ \mathcal{J} \subset \mathcal{P} \), then either \(\mathcal{I} \subset \mathcal{P} \) or \(\mathcal{J} \subset \mathcal{P} \). We call \(\mathcal{I} \) **completely prime** if it is a thick ideal such that \(f \circ g \in \mathcal{I} \) implies either \(f \in \mathcal{I} \) or \(g \in \mathcal{I} \).

Definition

The set of all primes \(\mathcal{P} \) of a 2-category \(\mathcal{T} \) is called the **spectrum** of \(\mathcal{T} \) and is denoted \(\text{Spec}(\mathcal{T}) \).
Definition

Suppose B_+ is a \mathbb{Z}_+-ring. Then we call P a prime if P is a thick ideal, and $IJ \subseteq P$ implies I or J is in P for all thick ideals I and J.
General results

We obtain many results with respect to $\text{Spec}(\mathcal{T})$ that correspond to the prime spectra of noncommutative rings.

Theorem

A thick ideal \mathcal{P} is prime if and only if: for all 1-morphisms m, n of \mathcal{T} with $m \circ \mathcal{T} \circ n \in \mathcal{P}$, either $m \in \mathcal{P}$ or $n \in \mathcal{P}$.

This corresponds to the result in the classical theory:

Theorem

An ideal P of a ring R is prime if and only if: for all $x, y \in R$, if $xRy \subset P$ then x or y is in P.
General results

Theorem

A thick ideal \mathcal{P} is prime if and only if: for all thick ideals \mathcal{I}, \mathcal{J} properly containing \mathcal{P}, we have that $\mathcal{I} \circ \mathcal{J} \not\subset \mathcal{P}$.

Theorem

Every maximal thick ideal is prime.

Theorem

The spectrum of an exact 2-category \mathcal{T} is nonempty.
There is a bijection between \(\text{Spec}(\mathcal{T}) \) and \(\text{Spec}(K_0(\mathcal{T})_+) \).

Let \(\mathcal{T} \) be a categorification of \(A \). Consider the map \(\phi : \text{Spec}(K_0(\mathcal{T})_+) \to \text{Ideals}(K_0(\mathcal{T})) = A \) defined by
\[
\phi(P) = \{ x - y : x, y \in P \}.
\]

In general, \(\phi \) is not a map \(\text{Spec}(K_0(\mathcal{T})_+) \to \text{Spec}(K_0(\mathcal{T})) \).

Example: let \(H \) be a Hopf algebra, \(\mathcal{T} \) be the category of finitely generated \(H \)-modules. Then \(\{0\} \) is completely prime in \(K_0(\mathcal{T})_+ \) but not in \(K_0(\mathcal{T}) \).
Relationship between the spectra

![Diagram]

Lemma

Let \mathcal{T} be a categorification of A. If $\phi(P)$ is a prime in $K_0(\mathcal{T})$, and \mathcal{P} is the prime in \mathcal{T} corresponding to P, then $A/\phi(P)$ is categorified by the Serre quotient \mathcal{T}/\mathcal{P}.
Coordinate rings of Richardson varieties

Definition

Suppose G is a connected simple Lie group, B_\pm opposite Borel subgroups, and W the Weyl group. Then the Richardson variety of u and $w \in W$ is

$$R_{u,w} = B_- \cdot uB_+ \cap B_+ \cdot wB_+ \subset G/B_+.$$

Individually, $B_- \cdot uB_+$ and $B_+ \cdot wB_+$ are called Schubert cells.
Coordinate rings of Richardson varieties

Theorem (Yakimov)

\[G/B_+ = \bigsqcup_{u \leq w, u, w \in W} R_{u,w}. \]

Applications of Richardson varieties:

- Representation theory (Richardson, Kazhdan, Lusztig, Postnikov);
- Total positivity (Lusztig);
- Poisson geometry (Brown, Goodearl, and Yakimov);
- Algebraic geometry (Knutson, Lam, Speyer);
- Cluster algebras (Leclerc).
Coordinate rings of Richardson varieties

We restrict to $u = 1$ for simplicity.
Let $U_q(n_+)$ denote the subset of $U_q(g)$ generated by the E_i Chevalley generators.

Theorem (Yakimov)

If T is a maximal torus of G, then T acts on $U_q(n_+)$ via an algebra automorphism. The T-invariant prime ideals are parametrized by elements of W.

Theorem (Yakimov)

$U_q(n_+)/I_w$ is a quantization of the coordinate ring $\mathbb{C}[R_{1,w}]$.
Coordinate rings of Richardson varieties

We want to produce a categorification of $U_q(n_+)/I_w$.

Theorem (Khovanov and Lauda)

There exists a categorification \mathcal{U}^+ of $U_q(n_+)$ that is a tensor category of modules of KLR-algebras.
We are currently working on showing that I_w is a prime in $\text{Spec}(U_q(n_+))$ corresponding to a prime in $\text{Spec}(U_q(n_+)_+).$ Then if I_w is the prime in $\text{Spec}(\mathcal{U}^+)$ corresponding to I_w, then

$$\mathcal{U}^+/I_w$$

will categorify quantization of the coordinate ring of the Richardson variety.
Conclusion

Thanks for listening!