Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardsor varieties

Prime Spectra of 2-Categories Joint work with Milen Yakimov

Kent Vashaw

Louisiana State University

kvasha1@lsu.edu

November 19, 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Overview

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardsor varieties

1 Category theory

2 The prime spectra

3 Applications to Richardson varieties

2-Categories

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties

Definition

A **2-category** is a category enriched over the category of small categories.

- So a 2-category ${\mathcal T}$ has:
 - Objects, denoted by *A*₁, *A*₂ etc;
 - 1-morphisms between objects, denoted f, g, h, etc; set of 1-morphisms from A₁ to A₂ denoted T(A₁, A₂);
 - 2-morphisms between 1-morphisms, denoted α, β, γ, etc; set of 2-morphisms from f to g denoted T(f, g).

2-Categories

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardsor varieties Composition of 1-morphisms:

$$A_1 \xrightarrow{f} A_2 \xrightarrow{g} A_3.$$

Vertical composition of 2-morphisms $\alpha \circ \beta$:

Horizontal composition of 2-morphisms $\alpha_2 * \alpha_1$:

2-Categories

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardsor varieties

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Exact categories

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardsor varieties

Definition

A 1-category is called exact if:

It is additive;

It has a set of distinguished short exact sequences

$$A_1 \rightarrow A_2 \rightarrow A_3$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

that obey some axioms.

Exact categories

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties Some exact 1-categories:

An additive category with short exact sequences defined by

$$A_1 \rightarrow A_1 \oplus A_3 \rightarrow A_3;$$

- Abelian categories with traditional short exact sequences (ker g ≅ im f);
- Full subcategories of abelian categories closed under extension.

Definition

A 2-category T is **exact** if each set T(A, B) is itself an exact 1-category.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Grothendieck group

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardsor varieties

Definition

Suppose C is an exact 1-category. Then the **Grothendieck** group of C, denoted $K_0(C)$, is defined by:

- Take the free abelian group on objects of C;
- For every exact sequence

$$0 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow 0,$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

quotient by the relation $[A_1] + [A_3] = [A_2]$.

Grothendieck group

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardsor varieties

Definition

Suppose \mathcal{T} is an exact 2-category. Then the **Grothendieck** group of \mathcal{T} , denoted $K_0(\mathcal{T})$ is defined as the 1-category with:

- Objects the same as *T*;
- Set of morphisms from X to Y given by $K_0(\mathcal{T}(X, Y))$, the Grothendieck group of the 1-category $\mathcal{T}(X, Y)$.

 Composition of morphisms induced from composition of morphisms in T.

Positive part of the Grothendieck group

Prime Spectra of 2-Categories

Definition

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties

The **positive part of the Grothendieck group** of an exact 1-category C, denoted $K_0(C)_+$, is defined as the subset of $K_0(C)$ forming a monoid under addition generated by the indecomposable objects.

In other words, while the Grothendieck group has all elements of the form

$$\sum_i \lambda_i [b_i], \lambda_i \in \mathbb{Z},$$

the positive part of the Grothendieck group has elements of the form

$$\sum_i \lambda_i[b_i], \lambda_i \in \mathbb{N}.$$

Positive part of the Grothendieck group

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties

Definition

The positive part of the Grothendieck group of an exact 2-category \mathcal{T} , denoted $K_0(\mathcal{T})_+$, has the same objects as \mathcal{T} , with hom spaces $K_0(\mathcal{T})_+(X, Y)$ defined by $K_0(\mathcal{T}(X, Y))_+$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Strong categorification

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

- The prime spectra
- Applications to Richardson varieties

- Let A an algebra with orthogonal idempotents e_i with $1 = e_1 + e_2 + ... + e_n$.
- $A = \bigoplus e_i A e_j$.
- Consider A as a category: an object for each e_i, set of morphisms from i to j given by e_iAe_j.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Composition of morphisms given by multiplication.

	Strong categorification
Prime Spectra of 2-Categories Kent Vashaw Category theory The prime spectra Applications to Richardson varieties	\mathcal{T}
	$\mathcal{K}_0(\mathcal{T}) \xrightarrow{\text{view as an algebra}} \mathcal{A}$

Strong categorification

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties

Definition

We call B_+ a \mathbb{Z}_+ -ring if B_+ has a basis (as a monoid) $\{b_i\}$ with relations $b_i b_j = \sum m_{i,j}^k b_k$ where all coefficients are positive. Elements are all positive linear combinations of basis elements, multiplication is extended from basis elements.

So we can view Grothendieck groups of 2-categories as \mathbb{Z} -algebras, and positive Grothendieck groups as \mathbb{Z}_+ -rings.

Ideals

Definition

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties Let T be an exact 2-category where composition of 1-morphisms is an exact bifunctor. We call I a **thick ideal** of T if:

■ *I* is a full subcategory of *T* such that if in *T*(*X*, *Y*) we have an exact sequence of 1-morphisms

$$0 \rightarrow f_1 \rightarrow f_2 \rightarrow f_3 \rightarrow 0,$$

then f_2 is in \mathcal{I} if and only if f_1 and f_2 are in \mathcal{I} ;

■ \mathcal{I} is an ideal: if $f \in (X, Y)$ is $\in \mathcal{I}$ and $g \in \mathcal{T}(Y, Z)$ then $g \circ f \in \mathcal{I}$; and if $h \in \mathcal{T}(W, X)$ then $f \circ h \in \mathcal{I}$.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Ideals

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties

Definition

Suppose \mathcal{M} is any subset of 1-morphisms and 2-morphisms of a 2-category \mathcal{T} . Then we define the **thick ideal generated by** \mathcal{M} , denoted $\langle \mathcal{M} \rangle$, to be the smallest thick ideal that contains \mathcal{M} , which is the intersection of all thick ideals containing \mathcal{M} .

Definition

Suppose B_+ is a \mathbb{Z}_+ -ring. Then $I \subset B_+$ is a **thick ideal** if a + b is in I if and only if a and b are in I, and we also have that if i is in I, then ai and ia are in I for every $a \in B_+$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Prime and completely prime ideals

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties

Definition

We call \mathcal{P} a **prime** of \mathcal{T} if \mathcal{P} is a thick ideal of \mathcal{T} such that if \mathcal{I} and \mathcal{J} are thick ideals in \mathcal{T} , then if $\mathcal{I} \circ \mathcal{J} \subset \mathcal{P}$, then either $\mathcal{I} \subset \mathcal{P}$ or $\mathcal{J} \subset \mathcal{P}$. We call \mathcal{I} **completely prime** if it is a thick ideal such that $f \circ g \in \mathcal{I}$ implies either $f \in \mathcal{I}$ or $g \in \mathcal{I}$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Definition

The set of all primes \mathcal{P} of a 2-category \mathcal{T} is called the **spectrum of** \mathcal{T} and is denoted Spec(\mathcal{T}).

Prime and completely prime ideals

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties

Definition

Suppose B_+ is a \mathbb{Z}_+ -ring. Then we call P a **prime** if P is a thick ideal, and $IJ \subset P$ implies I or J is in P for all thick ideals I and J.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

General results

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties We obtain many results with respect to $\text{Spec}(\mathcal{T})$ that correspond to the prime spectra of noncommutative rings.

Theorem

A thick ideal \mathcal{P} is prime if and only if: for all 1-morphisms m, n of \mathcal{T} with $m \circ \mathcal{T} \circ n \in \mathcal{P}$, either $m \in \mathcal{P}$ or $n \in \mathcal{P}$.

This corresponds to the result in the classical theory:

Theorem

An ideal P of a ring R is prime if and only if: for all $x, y \in R$, if $xRy \subset P$ then x or y is in P.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

General results

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties

Theorem

A thick ideal \mathcal{P} is prime if and only if: for all thick ideals \mathcal{I}, \mathcal{J} properly containing \mathcal{P} , we have that $\mathcal{I} \circ \mathcal{J} \not\subset \mathcal{P}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Theorem

Every maximal thick ideal is prime.

Theorem

The spectrum of an exact 2-category \mathcal{T} is nonempty.

Relationship between the spectra

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties

Lemma

There is a bijection between $\text{Spec}(\mathcal{T})$ and $\text{Spec}(\mathcal{K}_0(\mathcal{T})_+)$.

Let \mathcal{T} be a categorification of A. Consider the map ϕ : Spec $(\mathcal{K}_0(\mathcal{T})_+) \rightarrow$ Ideals $(\mathcal{K}_0(\mathcal{T})) = A$ defined by $\phi(P) = \{x - y : x, y \in P\}.$

Lemma

In general, ϕ is not a map $\operatorname{Spec}(\mathcal{K}_0(\mathcal{T})_+) \to \operatorname{Spec}(\mathcal{K}_0(\mathcal{T}))$.

Example: let H be a Hopf algebra, \mathcal{T} be the category of finitely generated H-modules. Then $\{0\}$ is completely prime in $\mathcal{K}_0(\mathcal{T})_+$ but not in $\mathcal{K}_0(\mathcal{T})$.

Relationship between the spectra

Kent Vashaw

Category theory

The prime spectra

Applications to Richardsor varieties

Lemma

Let \mathcal{T} be a categorification of A. If $\phi(P)$ is a prime in $K_0(\mathcal{T})$, and \mathcal{P} is the prime in \mathcal{T} corresponding to P, then $A/\phi(P)$ is categorified by the Serre quotient \mathcal{T}/\mathcal{P} .

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties

Definition

Suppose G is a connected simple Lie group, B_{\pm} opposite Borel subgroups, and W the Weyl group. Then the **Richardson** variety of u and $w \in W$ is

$$R_{u,w} = B_- \cdot uB_+ \cap B_+ \cdot wB_+ \subset G/B_+.$$

Individually, $B_- \cdot uB_+$ and $B_+ \cdot wB_+$ are called **Schubert cells**.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties

Theorem (Yakimov)

$$G/B_+ = \bigsqcup_{\substack{u \leq w \\ u, w \in W}} R_{u, w}.$$

Applications of Richardson varieties:

- Representation theory (Richardson, Kazhdan, Lusztig, Postnikov);
- Total positivity (Lusztig);
- Poisson geometry (Brown, Goodearl, and Yakimov);

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Algebraic geometry (Knutson, Lam, Speyer);
- Cluster algebras (Leclerc).

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties We restrict to u = 1 for simplicity.

Let $U_q(\mathfrak{n}_+)$ denote the subset of $U_q(\mathfrak{g})$ generated by the E_i Chevalley generators.

Theorem (Yakimov)

If T is a maximal torus of G, then T acts on $U_q(n_+)$ via an algebra automorphism. The T-invariant prime ideals are parametrized by elements of W.

Theorem (Yakimov)

 $U_q(\mathfrak{n}_+)/I_w$ is a quantization of the coordinate ring $\mathbb{C}[R_{1,w}]$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Prime Spectra of 2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties We want to produce a categorification of $U_q(\mathfrak{n}_+)/I_w$.

Theorem (Khovanov and Lauda)

There exists a categorification \mathcal{U}^+ of $U_q(\mathfrak{n}_+)$ that is a tensor category of modules of KLR-algebras.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Current work

Prime Spectra of 2-Categories

Category theory

The prime spectra

Applications to Richardson varieties

We are currently working on showing that I_w is a prime in Spec $(U_q(\mathfrak{n}_+))$ corresponding to a prime in Spec $(U_q(\mathfrak{n}_+)_+)$. Then if \mathcal{I}_w is the prime in Spec (\mathcal{U}^+) corresponding to I_w , then

$$\mathcal{U}^+/\mathcal{I}_w$$

will categorify quantization of the coordinate ring of the Richardson variety.

<u> </u>	
Conc	lusion

Prime Spectra
of
2-Categories

Kent Vashaw

Category theory

The prime spectra

Applications to Richardson varieties Thanks for listening!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで