Universal Deformation Rings: Semidihedral and Generalized Quaternion 2-groups

Roberto Soto California State University, Fullerton

> November 20, 2016 Columbia, MO

Joint Work with Frauke Bleher and Ted Chinburg

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction

Question

Let *k* be an algebraically closed field of prime characteristic *p*. Let *G* be a finite group and *V* a finitely generated *kG*-module. When can *V* be lifted to a module for *G* over a complete discrete valuation ring, such as the ring of infinite Witt vectors W = W(k) over *k*?

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Introduction

Question

Let *k* be an algebraically closed field of prime characteristic *p*. Let *G* be a finite group and *V* a finitely generated *kG*-module. When can *V* be lifted to a module for *G* over a complete discrete valuation ring, such as the ring of infinite Witt vectors W = W(k) over *k*?

Examples

1. If all 2-extensions of *V* by itself are trivial, then *V* can always be lifted over *W* (Green, 1959).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

2. Every endo-trivial *kG*-module can be lifted to an endo-trivial *WG*-module (Alperin, 2001).

Goals

Definition

For $n \ge 4$, let SD_n denote the semidihedral group of order 2^n , i.e.,

$$SD_n = \langle x, y | x^{2^{n-1}} = y^2 = 1, yxy^{-1} = x^{2^{n-2}-1} \rangle$$

Goals

Definition

For $n \ge 4$, let SD_n denote the semidihedral group of order 2^n , i.e.,

$$SD_n = \langle x, y | x^{2^{n-1}} = y^2 = 1, yxy^{-1} = x^{2^{n-2}-1} \rangle.$$

Definition

For $n \ge 3$, let GQ_n denote the (generalized) quaternion group of order 2^n , i.e.,

$$GQ_n = \langle x, y | x^{2^{n-1}} = 1, x^{2^{n-2}} = y^2, yxy^{-1} = x^{-1} \rangle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Main Result

Proposition (Bleher, Chinburg, S)

Let k be an algebraically closed field of characteristic 2, let W be the ring of infinite Witt vectors over k, and let $D = SD_n$ or $D = GQ_n$. Then if V is a finitely generated endo-trivial kD-module we have the following:

- 1) $R(D, V) \cong W[\mathbb{Z}/2 \times \mathbb{Z}/2]$ and
- Every universal lift U of V over R = R(D, V) is endo-trivial in the sense that the U* ⊗_R U ≅ R ⊕ Q_R, as RD-modules, where Q_R is a free RD-module.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q (~

General setup

Let *k* be an algebraically closed field of prime characteristic *p*, and let W = W(k) be the ring of infinite Witt vectors over *k*.

Let C be the category of all complete local commutative Noetherian rings R with residue field k, where the morphisms are local homomorphisms of local rings which induce the identity on the residue field k.

Note that all rings R in C have a natural W-algebra structure, meaning that the morphisms in C can also be viewed as continuous W-algebra homomorphisms inducing the identity on k.

Let *G* be a finite group, let *V* be a finitely generated kG-module, and let *R* be an object in *C*.

Deformations

Definition

(i) A *lift* of V over R is a pair, (M, ϕ) , where

• *M* is a finitely generated *RG*-module, that is free over *R*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• $\phi: k \otimes_R M \longrightarrow V$ is a *kG*-module isomorphism.

Deformations

Definition

(i) A lift of V over R is a pair, (M, ϕ) , where

- *M* is a finitely generated *RG*-module, that is free over *R*.
- $\phi: k \otimes_R M \longrightarrow V$ is a *kG*-module isomorphism.

(ii) (M, φ) ≅ (M', φ') as lifts, if there exists an RG-module isomorphism f : M → M' such that the following diagram commutes

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Deformations

Definition

(i) A lift of V over R is a pair, (M, ϕ) , where

- *M* is a finitely generated *RG*-module, that is free over *R*.
- $\phi: k \otimes_R M \longrightarrow V$ is a *kG*-module isomorphism.
- (ii) (M, φ) ≅ (M', φ') as lifts, if there exists an RG-module isomorphism f : M → M' such that the following diagram commutes

(iii) Let $[M, \phi]$ denote the isomorphism class of a lift (M, ϕ) of *V* over *R*. This isomorphism class is called a *deformation* of *V* over *R*.

Universal deformation rings

Definition

Suppose there exists a ring R(G, V) in C and a lift $(U(G, V), \phi_U)$ of V over R(G, V) such that for all rings R in C and for each lift (M, ϕ) of V over R there exists a unique morphism

$$\alpha: R(G, V) \to R$$

in $\ensuremath{\mathcal{C}}$ such that

$$(\mathbf{M},\phi)\cong (\mathbf{R}\otimes_{\mathbf{R}(\mathbf{G},\mathbf{V}),\alpha}U(\mathbf{G},\mathbf{V}),\phi'_U)$$

where ϕ'_U is the composition

$$k \otimes_R (R \otimes_{R(G,V),\alpha} U(G,V)) \cong k \otimes_{R(G,V)} U(G,V) \xrightarrow{\phi} V$$
.

Then R(G, V) is called the universal deformation ring of V, and $[U(G, V), \phi_U]$ is called the universal deformation of V.

Modules with stable endomorphism ring k

Theorem (Bleher and Chinburg, 2000) Let V be a finitely generated kG-module such that

 $\underline{\operatorname{End}}_{kG}(V) \cong k.$

Then

(i) V has a universal deformation ring R(G, V),

(ii)
$$R(G, \Omega(V)) \cong R(G, V)$$
, and

- (iii) there exists a non-projective indecomposable kG-module V₀ such that
 - $\underline{\operatorname{End}}_{kG}(V_0) \cong k$,
 - $V \cong V_0 \oplus Q$ for some projective kG-module Q, and
 - $R(G, V) \cong R(G, V_0).$

Endo-trivial kSD_n-modules

Summary (Carlson and Thévenaz, 2000) Let *k* be an algebraically closed field of characteristic 2 and let $z = x^{2^{n-2}}$, and let

$$H = \langle x^{2^{n-3}}, yx \rangle, E = \langle y, z \rangle.$$

Let $T(SD_n)$ denote the group of equivalence classes of endo-trivial kSD_n -modules and consider the restriction map

$$\Xi_{SD_n}: T(SD_n) \to T(E) \times T(H) \cong \mathbb{Z} \times \mathbb{Z}/4.$$

Then Ξ_{SD_n} is injective, $T(SD_n) \cong \mathbb{Z} \times \mathbb{Z}/2$, and $T(SD_n)$ is generated by $[\Omega_{SD_n}^1(k)]$ and $[\Omega_{SD_n}^1(L)]$, where

 $Y = k[SD_n/\langle y \rangle]$ and L = rad(Y).

Lemma Let $\Lambda_{SD_n} = k \langle a, b \rangle / I_{SD_n}$, where $I_{SD_n} = ((ab)^{2^{n-2}} - (ba)^{2^{n-2}}, a^2 - b(ab)^{2^{n-2}-1} - (ab)^{2^{n-2}-1}, b^2, (ab)^{2^{n-2}}a)$ Let $z = x^{2^{n-2}}$ and define $r_a, r_b \in rad(kSD_n)$ by

$$r_a = (z + yx) + (x + x^{-1}) + \sum_{i=1}^{2^{n-4}-1} (x^{4i+1} + x^{-(4i+1)})(1 + zy)$$

$$r_b = 1 + y$$

Then the map (Bondarenko and Drozd, 1977) $f_{SD_n}:\Lambda_{SD_n}\to kSD_n$ defined by

$$f_{SD_n}(a) = r_a, f_{SD_n}(b) = r_b$$

(日)(1)

induces a k-algebra isomorphism.

Lemma

Let $\Lambda = \Lambda_{SD_n}$ and define the following Λ -modules

 $Y_{\Lambda} = \Lambda b \text{ and } L_a = \Lambda a b.$

Then $Y_{\Lambda} \cong \Lambda/\Lambda b$ and $L_a \cong \Lambda a/\Lambda a^2 \cong \Lambda/\Lambda a$. Moreover, Y_{Λ} and L_a are uniserial Λ -modules of length 2^{n-1} and $2^{n-1} - 1$, respectively. Furthermore, $f_{SD_n}(Y_{\Lambda}) = Y$ and $f_{SD_n}(L_a) = L$.

・ ロ ト ・ 雪 ト ・ 目 ト ・

Sac

Lemma

Let $\Lambda = \Lambda_{SD_n}$ and define the following Λ -modules

 $Y_{\Lambda} = \Lambda b \text{ and } L_a = \Lambda a b.$

Then $Y_{\Lambda} \cong \Lambda/\Lambda b$ and $L_a \cong \Lambda a/\Lambda a^2 \cong \Lambda/\Lambda a$. Moreover, Y_{Λ} and L_a are uniserial Λ -modules of length 2^{n-1} and $2^{n-1} - 1$, respectively. Furthermore, $f_{SD_n}(Y_{\Lambda}) = Y$ and $f_{SD_n}(L_a) = L$.

・ ロ ト ・ 雪 ト ・ 目 ト ・

Sac

The component of the stable AR-quiver $\Gamma_S(kSD_n)$ containing *L*

Figure: A consequence of Erdmann's work

・ロト ・ 同 ト ・ 回 ト ・ 回 ト

= 900

Endo-trivial kGQ_n-modules

Summary (Carlson and Thévenaz, 2000)

Let $T(GQ_n)$ denote the group of equivalence classes of endo-trivial kGQ_n -modules. Then there exists an endo-trivial kGQ_n -module L with k-dimension $2^{n-1} - 1$. If n = 3, then $T(GQ_n) \cong \mathbb{Z}/4 \oplus \mathbb{Z}/2$ generated by $[\Omega^1_{GQ_n}(k)]$ and $[\Omega^1_{GQ_n}(L)]$. If $n \ge 4$ then let

$$H = \langle yx, x^{2^{n-3}} \rangle, H' = \langle y, x^{2^{n-3}} \rangle$$

and consider the restriction map

$$\Xi_{GQ_n}: T(GQ_n) \to T(H) \times T(H') \cong \mathbb{Z}/4 \times \mathbb{Z}/4.$$

Then Ξ_{GQ_n} is injective, $T(GQ_n) \cong \mathbb{Z}/4 \oplus \mathbb{Z}/2$, and $T(GQ_n)$ is generated by $[\Omega^1_{GQ_n}(k)]$ and $[\Omega^1_{GQ_n}(L)]$. Moreover, for all $n \ge 3$ we have that

$$T(GQ_n) = \{ [\Omega_{GQ_n}^i(k)] \}_{i=0}^3 \cup \{ [\Omega_{GQ_n}^i(L)] \}_{i=0}^3.$$

Lemma
Let
$$\Lambda_{GQ_n} = k \langle a, b \rangle / I_{GQ_n}$$
, where
 $I_{SD_n} = ((ab)^{2^{n-2}} - (ba)^{2^{n-2}}, a^2 - b(ab)^{2^{n-2}-1} - \delta(ab)^{2^{n-2}}, b^2 - a(ba)^{2^{n-2}-1} - \delta(ab)^{2^{n-2}}, (ab)^{2^{n-2}}a)$ and
 $\delta = \begin{cases} 0 \text{ if } n = 3\\ 1 \text{ if } n \ge 4 \end{cases}$

If n = 3, let ω be a primitive cube root of unity in k and define $r_a, r_b \in rad(kSD_n)$ by

$$r_a = (1 + x) + \omega(1 + yx) + \omega^2(1 + y)$$

$$r_b = (1 + x) + \omega^2(1 + yx) + \omega(1 + y)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Lemma (Continued)

If $n \ge 4$, define $r, r_a, r_b \in rad(kSD_n)$ as follows

$$r = (yx + y)^{2^{n-1}-3} + \sum_{i=1}^{n-3} (yx + y)^{2^{n-2}-2^{i}},$$

$$r_a = (1 + yx + r) + [(1 + yx + r)(1 + y + r)]^{2^{n-2}-1},$$

$$r_b = (1 + y + r) + [(1 + yx + r)(1 + y + r)]^{2^{n-2}-1},$$

Then the map (Dade, 1972) $f_{GQ_n}:\Lambda_{GQ_n}\to kGQ_n$ defined by

$$f_{GQ_n}(a) = r_a, f_{GQ_n}(b) = r_b$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

induces a k-algebra isomorphism.

A visualization of kGQ_n

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Lemma

Let $\Lambda = \Lambda_{GQ_n}$ and define the following Λ -modules

 $L_a = \Lambda ab and L_b = \Lambda ba.$

Then $L_a \cong \Lambda/\Lambda a$ and $L_b \cong \Lambda/\Lambda b$ and both are uniserial of length $2^{n-1} - 1$ whose stable endomorphism rings are isomorphic to *k*. Moreover, the Ω -orbit of L_a is as follows:

 $\Omega^{1}_{\Lambda}(L_{a}) \cong \Lambda a; \Omega^{2}_{\Lambda}(L_{a}) \cong L_{b}; \Omega^{3}_{\Lambda}(L_{a}) \cong \Lambda b; \Omega^{4}_{\Lambda}(L_{a}) \cong L_{a},$

and L_a and L_b lie at the end of a 2-tube in the stable Auslander-Reiten quiver of Λ .

Furthermore the endo-trivial kGQ_n-module L corresponds under f_{GQ_n} to either L_a or L_b , and the Ω -orbit of L corresponds to the Ω -orbit of L_a .

A visualization of L_a and L_b

Keys to proof

Proof outline

Let $D_n = SD_n$ or $D_n = GQ_n$, $n \ge 4$, and let $\Lambda = \Lambda_{D_n}$. Moreover, recall the isomorphism $f_{D_n} : \Lambda \to kD_n$ and the uniserial and endo-trivial kD_n -module $L_a = \Lambda ab$ which we will denote by L. We let $\rho \in \{yx, x\}$ and we denote $V = \Omega^{-1}(L)$ and let $R = R(D_n, V)$.

- Show that $\operatorname{Res}_{\langle \rho \rangle}^{D_n} V \cong k \oplus P_{\rho}$ where P_{ρ} is a free $k \langle \rho \rangle$ -module.
- Note that $R(\langle \rho \rangle, \operatorname{Res}_{\langle \rho \rangle}^{D_n} V) \cong W[\langle \rho \rangle]$ Thus we obtain a *W*-algebra homomorphism

 $\beta: W[\langle y \rangle] \otimes_W W[\langle yx \rangle] \to R.$

くしゃ 人間 そう イリット しょうくう

• Determine the lifts of V to $k[\epsilon]/(\epsilon^2)$.

Keys to proof (cont.)

Proof outline (cont)

- Show that $\beta : W[\langle y \rangle] \otimes_W W[\langle yx \rangle] \to R$ is surjective
- Then show there exists a surjective W-algebra homomorphism

$$\alpha: W[\mathbb{Z}/2 \times \mathbb{Z}/2] \to R.$$

• Show that there exist four pairwise non-isomorphic lifts of *V* over *W*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Conclude that R(SD_n, V) ≅ W[ℤ/2 × ℤ/2].

The case when n = 3

Proposition

Let V be a uniserial kQ_8 -module of length 3 and let $R = R(Q_8, V)$ be its versal deformation ring. Let σ be the outer automorphism of order 3 such that σ cyclically permutes (x, y, yx).

- i. V is endo-trivial and R is a universal deformation ring of V.
- ii. $R/2R \cong k[[\mathbb{Z}/2 \times \mathbb{Z}/2]].$
- iii. Twisting the action of Q_8 by σ induces a non-trivial k-linear transformation on the space of deformations of V over $k[\epsilon]$.

くしゃ 人間 そう イリット しょうくう

The case when n = 3

Proposition (continued)

Let $\alpha_1, \alpha_2, \alpha_3, \alpha_4 : R \to W$ be the four pairwise surjective morphisms in C corresponding to four non-isomorphic lifts of V over W obtained by twisting one particular lift of V over W by the four linear representations of Q_8 over W.

iv. There exists an injective W-algebra homomorphism

 $\alpha : \mathbf{R} \to \mathbf{W} \times \mathbf{W} \times \mathbf{W} \times \mathbf{W}$, given by $\alpha = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$.

v. Twisting the action of Q_8 by σ induces a non-trivial automorphism β_{σ} of the universal deformation ring R in C.

Thank you!

