Universal Deformation Rings: Semidihedral and Generalized Quaternion 2-groups

Roberto Soto
California State University, Fullerton

November 20, 2016
Columbia, MO

Joint Work with Frauke Bleher and Ted Chinburg

Introduction

Question

Let k be an algebraically closed field of prime characteristic p. Let G be a finite group and V a finitely generated $k G$-module. When can V be lifted to a module for G over a complete discrete valuation ring, such as the ring of infinite Witt vectors $W=W(k)$ over k ?

Introduction

Question
Let k be an algebraically closed field of prime characteristic p. Let G be a finite group and V a finitely generated $k G$-module. When can V be lifted to a module for G over a complete discrete valuation ring, such as the ring of infinite Witt vectors $W=W(k)$ over k ?

Examples

1. If all 2-extensions of V by itself are trivial, then V can always be lifted over W (Green, 1959).
2. Every endo-trivial $k G$-module can be lifted to an endo-trivial WG-module (Alperin, 2001).

Goals

Definition
For $n \geq 4$, let $S D_{n}$ denote the semidihedral group of order 2^{n}, i.e.,

$$
S D_{n}=\left\langle x, y \mid x^{2^{n-1}}=y^{2}=1, y x y^{-1}=x^{2^{n-2}-1}\right\rangle .
$$

Goals

Definition
For $n \geq 4$, let $S D_{n}$ denote the semidihedral group of order 2^{n}, i.e.,

$$
S D_{n}=\left\langle x, y \mid x^{2^{n-1}}=y^{2}=1, y x y^{-1}=x^{2^{n-2}-1}\right\rangle .
$$

Definition
For $n \geq 3$, let $G Q_{n}$ denote the (generalized) quaternion group of order 2^{n}, i.e.,

$$
G Q_{n}=\left\langle x, y \mid x^{2^{n-1}}=1, x^{2^{n-2}}=y^{2}, y x y^{-1}=x^{-1}\right\rangle .
$$

Main Result

Proposition (Bleher, Chinburg, S)
Let k be an algebraically closed field of characteristic 2, let W be the ring of infinite Witt vectors over k, and let $D=S D_{n}$ or $D=G Q_{n}$. Then if V is a finitely generated endo-trivial $k D$-module we have the following:

1) $R(D, V) \cong W[\mathbb{Z} / 2 \times \mathbb{Z} / 2]$ and
2) Every universal lift U of V over $R=R(D, V)$ is endo-trivial in the sense that the $U^{*} \otimes_{R} U \cong R \oplus Q_{R}$, as $R D$-modules, where Q_{R} is a free RD-module.

General setup

Let k be an algebraically closed field of prime characteristic p, and let $W=W(k)$ be the ring of infinite Witt vectors over k.

Let \mathcal{C} be the category of all complete local commutative Noetherian rings R with residue field k, where the morphisms are local homomorphisms of local rings which induce the identity on the residue field k.

Note that all rings R in \mathcal{C} have a natural W-algebra structure, meaning that the morphisms in \mathcal{C} can also be viewed as continuous W-algebra homomorphisms inducing the identity on k.

Let G be a finite group, let V be a finitely generated $k G$-module, and let R be an object in \mathcal{C}.

Deformations

Definition

(i) A lift of V over R is a pair, (M, ϕ), where

- M is a finitely generated $R G$-module, that is free over R.
- $\phi: k \otimes_{R} M \longrightarrow V$ is a $k G$-module isomorphism.

Deformations

Definition

(i) A lift of V over R is a pair, (M, ϕ), where

- M is a finitely generated $R G$-module, that is free over R.
- $\phi: k \otimes_{R} M \longrightarrow V$ is a $k G$-module isomorphism.
(ii) $(M, \phi) \cong\left(M^{\prime}, \phi^{\prime}\right)$ as lifts, if there exists an $R G$-module isomorphism $f: M \longrightarrow M^{\prime}$ such that the following diagram commutes

$$
k \otimes_{R} \xrightarrow[V_{V}]{M} \xrightarrow[\phi^{\prime}]{\mathrm{id} \otimes f} \otimes_{R} M^{\prime}
$$

Deformations

Definition

(i) A lift of V over R is a pair, (M, ϕ), where

- M is a finitely generated $R G$-module, that is free over R.
- $\phi: k \otimes_{R} M \longrightarrow V$ is a $k G$-module isomorphism.
(ii) $(M, \phi) \cong\left(M^{\prime}, \phi^{\prime}\right)$ as lifts, if there exists an RG-module isomorphism $f: M \longrightarrow M^{\prime}$ such that the following diagram commutes
(iii) Let $[M, \phi]$ denote the isomorphism class of a lift (M, ϕ) of V over R. This isomorphism class is called a deformation of V over R.

Universal deformation rings

Definition
Suppose there exists a ring $R(G, V)$ in \mathcal{C} and a lift $(U(G, V), \phi U)$ of V over $R(G, V)$ such that for all rings R in \mathcal{C} and for each lift (M, ϕ) of V over R there exists a unique morphism

$$
\alpha: R(G, V) \rightarrow R
$$

in \mathcal{C} such that

$$
(M, \phi) \cong\left(R \otimes_{R(G, V), \alpha} U(G, V), \phi_{U}^{\prime}\right)
$$

where ϕ_{U}^{\prime} is the composition

$$
k \otimes_{R}\left(R \otimes_{R(G, V), \alpha} U(G, V)\right) \cong k \otimes_{R(G, V)} U(G, V) \xrightarrow{\phi} V .
$$

Then $R(G, V)$ is called the universal deformation ring of V, and [$U(G, V), \phi U$] is called the universal deformation of V.

Modules with stable endomorphism ring k

Theorem (Bleher and Chinburg, 2000)
Let V be a finitely generated $k G$-module such that

$$
\operatorname{End}_{k G}(V) \cong k .
$$

Then
(i) V has a universal deformation ring $R(G, V)$,
(ii) $R(G, \Omega(V)) \cong R(G, V)$, and
(iii) there exists a non-projective indecomposable kG-module V_{0} such that

- $\operatorname{End}_{k G}\left(V_{0}\right) \cong k$,
- $V \cong V_{0} \oplus Q$ for some projective $k G$-module Q, and
- $R(G, V) \cong R\left(G, V_{0}\right)$.

Endo-trivial $k S D_{n}$-modules

Summary (Carlson and Thévenaz, 2000)

Let k be an algebraically closed field of characteristic 2 and let $z=x^{2^{n-2}}$, and let

$$
H=\left\langle x^{2^{n-3}}, y x\right\rangle, E=\langle y, z\rangle .
$$

Let $T\left(S D_{n}\right)$ denote the group of equivalence classes of endo-trivial $k S D_{n}$-modules and consider the restriction map

$$
\Xi_{S D_{n}}: T\left(S D_{n}\right) \rightarrow T(E) \times T(H) \cong \mathbb{Z} \times \mathbb{Z} / 4
$$

Then $\Xi_{S D_{n}}$ is injective, $T\left(S D_{n}\right) \cong \mathbb{Z} \times \mathbb{Z} / 2$, and $T\left(S D_{n}\right)$ is generated by $\left[\Omega_{S D_{n}}^{1}(k)\right]$ and $\left[\Omega_{S D_{n}}^{1}(L)\right]$, where

$$
Y=k\left[S D_{n} /\langle y\rangle\right] \text { and } L=\operatorname{rad}(Y) .
$$

A different point of view

Lemma
Let $\Lambda_{S D_{n}}=k\langle a, b\rangle / I_{S D_{n}}$, where

$$
\begin{aligned}
I_{S D_{n}}= & \left((a b)^{2^{n-2}}-(b a)^{2^{n-2}}, a^{2}-b(a b)^{2^{n-2}-1}-(a b)^{2^{n-2}-1}\right. \\
& \left.b^{2},(a b)^{2^{n-2}} a\right)
\end{aligned}
$$

Let $z=x^{2^{n-2}}$ and define $r_{a}, r_{b} \in \operatorname{rad}\left(k S D_{n}\right)$ by

$$
\begin{aligned}
& r_{a}=(z+y x)+\left(x+x^{-1}\right)+\sum_{i=1}^{2^{n-4}-1}\left(x^{4 i+1}+x^{-(4 i+1)}\right)(1+z y) \\
& r_{b}=1+y
\end{aligned}
$$

Then the map (Bondarenko and Drozd, 1977) $f_{S D_{n}}: \Lambda_{S D_{n}} \rightarrow k S D_{n}$ defined by

$$
f_{S D_{n}}(a)=r_{a}, f_{S D_{n}}(b)=r_{b}
$$

induces a k-algebra isomorphism.

A different point of view

Lemma

Let $\Lambda=\Lambda_{S D_{n}}$ and define the following Λ-modules

$$
Y_{\Lambda}=\Lambda b \text { and } L_{a}=\Lambda a b
$$

Then $Y_{\Lambda} \cong \Lambda / \Lambda b$ and $L_{a} \cong \Lambda a / \Lambda a^{2} \cong \Lambda / \Lambda a$. Moreover, Y_{\wedge} and L_{a} are uniserial \wedge-modules of length 2^{n-1} and $2^{n-1}-1$, respectively. Furthermore, $f_{S D_{n}}\left(Y_{\wedge}\right)=Y$ and $f_{S D_{n}}\left(L_{a}\right)=L$.

A different point of view

Lemma

Let $\Lambda=\Lambda_{S D_{n}}$ and define the following Λ-modules

$$
Y_{\Lambda}=\Lambda b \text { and } L_{a}=\Lambda a b
$$

Then $Y_{\Lambda} \cong \Lambda / \Lambda b$ and $L_{a} \cong \Lambda a / \Lambda a^{2} \cong \Lambda / \Lambda a$. Moreover, Y_{\wedge} and L_{a} are uniserial \wedge-modules of length 2^{n-1} and $2^{n-1}-1$, respectively. Furthermore, $f_{S D_{n}}\left(Y_{\wedge}\right)=Y$ and $f_{S D_{n}}\left(L_{a}\right)=L$.

The component of the stable AR-quiver $\Gamma_{s}\left(k S D_{n}\right)$ containing L

Figure: A consequence of Erdmann's work

Endo-trivial $k G Q_{n}$-modules

Summary (Carlson and Thévenaz, 2000)

Let $T\left(G Q_{n}\right)$ denote the group of equivalence classes of endo-trivial $k G Q_{n}$-modules. Then there exists an endo-trivial $k G Q_{n}$-module L with k-dimension $2^{n-1}-1$. If $n=3$, then $T\left(G Q_{n}\right) \cong \mathbb{Z} / 4 \oplus \mathbb{Z} / 2$ generated by $\left[\Omega_{G Q_{n}}^{1}(k)\right]$ and $\left[\Omega_{G Q_{n}}^{1}(L)\right]$. If $n \geq 4$ then let

$$
H=\left\langle y x, x^{2^{n-3}}\right\rangle, H^{\prime}=\left\langle y, x^{2^{n-3}}\right\rangle
$$

and consider the restriction map

$$
\equiv_{G Q_{n}}: T\left(G Q_{n}\right) \rightarrow T(H) \times T\left(H^{\prime}\right) \cong \mathbb{Z} / 4 \times \mathbb{Z} / 4
$$

Then $\equiv_{G Q_{n}}$ is injective, $T\left(G Q_{n}\right) \cong \mathbb{Z} / 4 \oplus \mathbb{Z} / 2$, and $T\left(G Q_{n}\right)$ is generated by $\left[\Omega_{G Q_{n}}^{1}(k)\right]$ and $\left[\Omega_{G Q_{n}}^{1}(L)\right]$. Moreover, for all $n \geq 3$ we have that

$$
T\left(G Q_{n}\right)=\left\{\left[\Omega_{G Q_{n}}^{i}(k)\right]\right\}_{i=0}^{3} \cup\left\{\left[\Omega_{G Q_{n}}^{i}(L)\right]\right\}_{i=0}^{3} .
$$

A different point of view

Lemma
Let $\Lambda_{G Q_{n}}=k\langle a, b\rangle / I_{G Q_{n}}$, where

$$
\begin{gathered}
I_{S D_{n}}=\left((a b)^{2^{n-2}}-(b a)^{2^{n-2}}, a^{2}-b(a b)^{2^{n-2}-1}-\delta(a b)^{2^{n-2}},\right. \\
\left.b^{2}-a(b a)^{2^{n-2}-1}-\delta(a b)^{2^{n-2}},(a b)^{2^{n-2}} a\right) \text { and } \\
\delta=\left\{\begin{array}{l}
0 \text { if } n=3 \\
1 \text { if } n \geq 4
\end{array}\right.
\end{gathered}
$$

If $n=3$, let ω be a primitive cube root of unity in k and define $r_{a}, r_{b} \in \operatorname{rad}\left(k S D_{n}\right)$ by

$$
\begin{aligned}
& r_{a}=(1+x)+\omega(1+y x)+\omega^{2}(1+y) \\
& r_{b}=(1+x)+\omega^{2}(1+y x)+\omega(1+y)
\end{aligned}
$$

A different point of view

Lemma (Continued)
If $n \geq 4$, define $r, r_{a}, r_{b} \in \operatorname{rad}\left(k S D_{n}\right)$ as follows

$$
\begin{aligned}
r & =(y x+y)^{2^{n-1}-3}+\sum_{i=1}^{n-3}(y x+y)^{2^{n-2}-2^{i}}, \\
r_{a} & =(1+y x+r)+[(1+y x+r)(1+y+r)]^{2^{n-2}-1}, \\
r_{b} & =(1+y+r)+[(1+y x+r)(1+y+r)]^{2^{n-2}-1}
\end{aligned}
$$

Then the map (Dade, 1972) $f_{G Q_{n}}: \Lambda_{G Q_{n}} \rightarrow k G Q_{n}$ defined by

$$
f_{G Q_{n}}(a)=r_{a}, f_{G Q_{n}}(b)=r_{b}
$$

induces a k-algebra isomorphism.

A visualization of $k G Q_{n}$

A different point of view

Lemma
Let $\Lambda=\Lambda_{G Q_{n}}$ and define the following Λ-modules

$$
L_{a}=\Lambda a b \text { and } L_{b}=\Lambda b a .
$$

Then $L_{a} \cong \Lambda / \Lambda a$ and $L_{b} \cong \Lambda / \Lambda b$ and both are uniserial of length $2^{n-1}-1$ whose stable endomorphism rings are isomorphic to k. Moreover, the Ω-orbit of L_{a} is as follows:

$$
\Omega_{\Lambda}^{1}\left(L_{a}\right) \cong \wedge a ; \Omega_{\Lambda}^{2}\left(L_{a}\right) \cong L_{b} ; \Omega_{\Lambda}^{3}\left(L_{a}\right) \cong \wedge b ; \Omega_{\Lambda}^{4}\left(L_{a}\right) \cong L_{a},
$$

and L_{a} and L_{b} lie at the end of a 2-tube in the stable Auslander-Reiten quiver of \wedge.
Furthermore the endo-trivial $k G Q_{n}$-module L corresponds under $f_{G Q_{n}}$ to either L_{a} or L_{b}, and the Ω-orbit of L corresponds to the Ω-orbit of L_{a}.

A visualization of L_{a} and L_{b}

Keys to proof

Proof outline

Let $D_{n}=S D_{n}$ or $D_{n}=G Q_{n}, n \geq 4$, and let $\Lambda=\Lambda_{D_{n}}$. Moreover, recall the isomorphism $f_{D_{n}}: \Lambda \rightarrow k D_{n}$ and the uniserial and endo-trivial $k D_{n}$-module $L_{a}=\Lambda a b$ which we will denote by L. We let $\rho \in\{y x, x\}$ and we denote $V=\Omega^{-1}(L)$ and let $R=R\left(D_{n}, V\right)$.

- Show that $\operatorname{Res}_{\langle\rho\rangle}^{D_{n}} V \cong k \oplus P_{\rho}$ where P_{ρ} is a free $k\langle\rho\rangle$-module.
- Note that $R\left(\langle\rho\rangle, \operatorname{Res}_{\langle\rho\rangle}^{D_{n}} V\right) \cong W[\langle\rho\rangle]$

Thus we obtain a W-algebra homomorphism

$$
\beta: W[\langle y\rangle] \otimes w W[\langle y x\rangle] \rightarrow R .
$$

- Determine the lifts of V to $k[\epsilon] /\left(\epsilon^{2}\right)$.

Keys to proof (cont.)

Proof outline (cont)

- Show that $\beta: W[\langle y\rangle] \otimes w W[\langle y x\rangle] \rightarrow R$ is surjective
- Then show there exists a surjective W-algebra homomorphism

$$
\alpha: W[\mathbb{Z} / 2 \times \mathbb{Z} / 2] \rightarrow R .
$$

- Show that there exist four pairwise non-isomorphic lifts of V over W.
- Conclude that $R\left(S D_{n}, V\right) \cong W[\mathbb{Z} / 2 \times \mathbb{Z} / 2]$.

The case when $n=3$

Proposition

Let V be a uniserial $k Q_{8}$-module of length 3 and let $R=R\left(Q_{8}, V\right)$ be its versal deformation ring. Let σ be the outer automorphism of order 3 such that σ cyclically permutes ($x, y, y x$).
i. V is endo-trivial and R is a universal deformation ring of V.
ii. $R / 2 R \cong k[[\mathbb{Z} / 2 \times \mathbb{Z} / 2]$.
iii. Twisting the action of Q_{8} by σ induces a non-trivial k-linear transformation on the space of deformations of V over $k[\epsilon]$.

The case when $n=3$

Proposition (continued)

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}: R \rightarrow W$ be the four pairwise surjective morphisms in \mathcal{C} corresponding to four non-isomorphic lifts of V over W obtained by twisting one particular lift of V over W by the four linear representations of Q_{8} over W.
iv. There exists an injective W-algebra homomorphism

$$
\alpha: R \rightarrow W \times W \times W \times W, \text { given by } \alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)
$$

v. Twisting the action of Q_{8} by σ induces a non-trivial automorphism β_{σ} of the universal deformation ring R in \mathcal{C}.

Questions?

Questions?

Thank you!

