Isotropic Schur roots

Charles Paquette

University of Connecticut

November 21 $^{\rm st}$, 2016

joint with Jerzy Weyman

- Describe the perpendicular category of an isotropic Schur root.
- Describe the ring of semi-invariants of an isotropic Schur root.
- Construct all isotropic Schur roots.

- $k = \bar{k}$ is an algebraically closed field.
- $Q = (Q_0, Q_1)$ is an acyclic quiver with $Q_0 = \{1, 2, \dots, n\}$.
- rep(Q) denotes the category of finite dimensional representations of Q over k.
- Given M ∈ rep(Q), we denote by d_M ∈ (ℤ_{≥0})ⁿ its dimension vector.

- We denote by $\langle -,-\rangle$ the Euler-Ringel form of ${\it Q}.$
- For $M, N \in \operatorname{rep}(Q)$, we have

 $\langle \mathbf{d}_{\mathbf{M}}, \mathbf{d}_{\mathbf{N}} \rangle = \dim_{k} \operatorname{Hom}(M, N) - \dim_{k} \operatorname{Ext}^{1}(M, N).$

Roots and Schur roots

- d ∈ (ℤ_{≥0})ⁿ is a (positive) root if d = d_M for some indecomposable M ∈ rep(Q).
- Then $\langle \mathbf{d}, \mathbf{d} \rangle \leq 1$ and we call \mathbf{d} :

 $\left\{ \begin{array}{ll} \mbox{real}, & \mbox{if } \langle {\bf d}, {\bf d} \rangle = 1; \\ \mbox{isotropic}, & \mbox{if } \langle {\bf d}, {\bf d} \rangle = 0; \\ \mbox{imaginary}, & \mbox{if } \langle {\bf d}, {\bf d} \rangle < 0; \end{array} \right.$

- A representation M is Schur if End(M) = k.
- If M is a Schur representation, then $\mathbf{d}_{\mathbf{M}}$ is a Schur root.
- We have real, isotropic and imaginary Schur roots.
- {iso. classes of excep. repr.} $\stackrel{1-1}{\longleftrightarrow}$ {real Schur roots}.

 $\bullet\,$ For d a dimension vector, we set $\mathcal{A}(d)$ the subcategory

$$\mathcal{A}(\mathbf{d}) = \{X \in \operatorname{rep}(Q) \mid \operatorname{Hom}(X, N) = 0 = \operatorname{Ext}^1(X, N)\}$$

for some $N \in \operatorname{rep}(Q, \mathbf{d})$.

- $\mathcal{A}(\mathbf{d})$ is an exact extension-closed abelian subcategory of $\operatorname{rep}(Q)$.
- If V is rigid (in particular, exceptional), then $\mathcal{A}(\mathbf{d}_{\mathbf{V}}) = {}^{\perp} V$.

Proposition (-, Weyman)

-

For a dimension vector \mathbf{d} , $\mathcal{A}(\mathbf{d})$ is a module category $\Leftrightarrow \mathbf{d}$ is the dimension vector of a rigid representation.

• Let δ be an isotropic Schur root of Q (so $\langle \delta, \delta \rangle = 0$).

Proposition (-, Weyman)

There is an exceptional sequence (M_{n-2}, \ldots, M_1) in rep(Q) where all M_i are simples in $\mathcal{A}(\delta)$.

• Complete this to a full exceptional sequence $(M_{n-2}, \ldots, M_1, V, W)$.

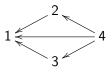
- Starting with $(M_{n-2}, \ldots, M_1, V, W)$ and reflecting, we get an exceptional sequence
- $E := (M_{i_1}, M_{i_2}, \ldots, M_{i_r}, V', W', N_1, \ldots, N_{n-r-2}).$
- Consider $\mathcal{R}(Q, \delta) := \text{Thick}(M_{i_1}, M_{i_2}, \dots, M_{i_r}, V', W').$

Theorem (-, Weyman)

The category $\mathcal{R}(Q, \delta)$ is tame connected with isotropic Schur root $\overline{\delta}$. It is uniquely determined by (Q, δ) . The simple objects in $\mathcal{A}(\delta)$ are:

- The M_i with $1 \le i \le n-2$,
- The quasi-simple objects of R(Q, δ) (which includes some of the M_i).
- In particular, the dimension vectors of those simple objects are either $\bar{\delta}$ or finitely many real Schur roots.

Consider the quiver



• We take
$$\boldsymbol{\delta}=(3,2,3,1).$$

- We get an exceptional sequence whose dimension vectors are ((8,3,3,3), (0,0,1,0), (0,1,0,0), (3,3,3,1)).
- We have $\delta = (3, 3, 3, 1) (0, 1, 0, 0).$
- $\bar{\delta} = (3, 2, 1, 1).$
- Simple objects in A(δ) are of dimension vectors (0,0,1,0), (8,3,3,3) or (3,2,1,1).
- We have $\mathcal{R}(Q, \delta)$ of Kronecker type.

An example

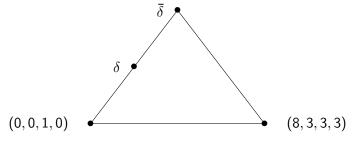


Figure : The cone of dimension vectors for $\delta = (3, 2, 3, 1)$

- For $\mathbf{d} = (d_1, \dots, d_n)$ a dimension vector, denote by $\operatorname{rep}(Q, \mathbf{d})$ the set of representations M with $M(i) = k^{d_i}$.
- $\operatorname{rep}(Q, \mathbf{d})$ is an affine space.
- For such a **d**, we set $\operatorname{GL}(\mathbf{d}) = \prod_{1 \leq i \leq n} \operatorname{GL}_{d_i}(k)$.
- The group $GL(\mathbf{d})$ acts on $rep(Q, \mathbf{d})$ and for $M \in rep(Q, \mathbf{d})$ a representation, $GL(\mathbf{d}) \cdot M$ is its isomorphism class in $rep(Q, \mathbf{d})$.

- Take $\operatorname{SL}(\operatorname{\mathbf{d}}) = \prod_{1 \leq i \leq n} \operatorname{SL}_{d_i}(k) \subset \operatorname{GL}(\operatorname{\mathbf{d}}).$
- The ring SI(Q, d) := k[rep(Q, d)]^{SL(d)} is the ring of semi-invariants of Q of dimension vector d.
- This ring is always finitely generated.

- Given $X \in \operatorname{rep}(Q)$ with $\langle \mathbf{d}_{\mathbf{X}}, \mathbf{d} \rangle = \mathbf{0}$, we can construct a semi-invariant $C^{X}(-)$ in $\operatorname{SI}(Q, \mathbf{d})$.
- We have that $C^X(-) \neq 0 \Leftrightarrow X \in \mathcal{A}(\mathbf{d}).$

Proposition (Derksen-Weyman, Schofield-Van den Bergh)

These semi-invariants span $SI(Q, \mathbf{d})$ over k.

Ring of semi-invariants of an isotropic Schur root

The ring SI(Q, d) is generated by the C^X(-) where X is simple in A(d).

Theorem (-, Weyman)

We have that $\operatorname{SI}(Q, \delta)$ is a polynomial ring over $\operatorname{SI}(\mathcal{R}, \overline{\delta})$.

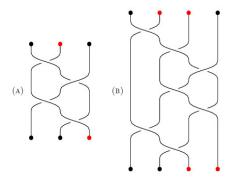
Corollary

By a result of Skowroński - Weyman, $SI(Q, \delta)$ is a polynomial ring or a hypersurface.

- A full exceptional sequence E = (X₁,...,X_n) is of isotropic type if there are X_i, X_{i+1} such that Thick(X_i, X_{i+1}) is tame.
- Isotropic position is *i* and root type δ_E is the unique iso. Schur root in Thick (X_i, X_{i+1}) .
- The braid group B_n acts on full exceptional sequences.
- This induces an action of B_{n-1} on exceptional sequences of isotropic type.

An example

 Consider an exceptional sequence E = (X, U, V, Y) of isotropic type with position 2.



• The exceptional sequence E' = (X', Y', U', V') is of isotropic type with isotropic position 3.

Theorem (-, Weyman)

An orbit of exceptional sequences of isotropic type under B_{n-1} always contains a sequence E with δ_E an isotropic Schur root of a tame full subquiver of Q.

Corollary

There are finitely many orbits under B_{n-1} .

• We can construct all isotropic Schur roots starting from the *easy ones*.

THANK YOU

Questions ?