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Goal

Goal : Find connections between fusion and universal deformation
rings.

Two elements of a subgroup N of a finite group Γ are said to be fused if
they are conjugate in Γ, but not in N.

The study of fusion arises in trying to relate the local structure of Γ to
its global structure. Fusion is also important to understanding the
representation theory of Γ.

Universal deformation rings of irreducible mod p representations of Γ
can be viewed as providing a universal generalization of Brauer character
theory of Γ.

My aim is to connect fusion to this universal generalization.
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Universal Deformation Rings

Let Γ be a finite group

Let V be an absolutely irreducible FpΓ-module.

By Mazur, V has a so-called universal deformation ring R(Γ,V ).

The ring R(Γ,V ) is characterized by the property that the
isomorphism class of every lift of V over a complete local
commutative Noetherian ring R with residue field Fp arises from a
unique local ring homomorphism α : R(Γ,V )→ R.

(A lift of V to R is a pair (M, φ) where M is a finitely generated
RΓ-module that is free over R, and φ : Fp ⊗R M → V is an
isomorphism of FpΓ-modules)
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Setup

Let G be a finite group which admits a faithful two-dimensional
irreducible complex representation. We associate to G an odd prime p,
such that

FpG is semisimple

Fp is a sufficiently large field for G

Consider a short exact sequence

0 Z/pZ× Z/pZ Γ G 1
ι π

φ

where

The action of G on N ∼= Z/pZ×Z/pZ corresponds to an irreducible
representation φ
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Question

We call the fusion of N in Γ the collection of tuples (n1, n2) ∈ N × N,
where n1 and n2 are fused in Γ.
We try to answer the following question:

Question

Let Σ be some subset of isoclasses of two-dimensional, absolutely
irreducible FpΓ-modules. Consider the function

Σ→ {local rings}, which sends V → R(Γφ,V ).

Can the graph of this function be used to detect the fusion of N in Γ?

David Meyer Finite Subgroups of Gl2(C) and Universal Deformation Rings



Answer

The function V → R(Γφ,V ) is nonconstant in this context exactly when
the representation φ is trivial on the center of G .

When the function V → R(Γφ,V ) is not trivial, knowledge of its graph
can be used to determine the fusion of N in Γ.

Specifically, we obtain the correspondence

Fusion of φ! {ker(ρ) : ρ abs. irr. and R(Γ,Vρ) � Zp}.
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Answer

Theorem (M.)

Let G be a finite irreducible subgroup of Gl2(C). Let p be an odd prime
such that FpG is semisimple, and Fp is a sufficiently large field for G. Let
φ be an irreducible action of G on N = Z/pZ× Z/pZ. Let Γ = Γφ be
the corresponding semidirect product. Then, the following two
statements are equivalent,

i. φ is trivial on the center of G

ii. there exists a V with R(Γ,V ) � Zp.

Theorem (M.)

Let G be a finite irreducible subgroup of Gl2(C). Let p be an odd prime
such that FpG is semisimple, and Fp is a sufficiently large field for G. Let
φ be an irreducible action of G on N = Z/pZ×Z/pZ, and let Γ = Γφ be
the corresponding semidirect product. Suppose that φ is trivial on the
center of G . Then one can determine the fusion of N in Γ from the set
{ker(ρ) : R(Γ,Vρ) � Zp}.
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Sketch

Make use of the following results:

Proposition (M.)

Let φ be the action of G on N, φ̃ denote the contragredient
representation of φ. Let V be an absolutely irreducible FpΓ-module.
Then,

H2(Γ,HomFp (V ,V )) ∼= [(Wφ̃ ⊗ V ∗ ⊗ V )⊕ (Wφ̃∧φ̃ ⊗ V ∗ ⊗ V )]G .

(For any representation θ, Wθ denotes the FpΓ-module associated to θ)

Theorem (Dickson)

If G ⊆ GL2(Fp) is a semisimple subgroup, then its image in PGL2(Fp) is
either cyclic, dihedral, or isomorphic to A4,A5, or S4.
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Sketch

So we have the following;

0

Z/mZ

0 Z/pZ× Z/pZ Γ G 1

H

0

ι

ι π

φ
π
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Sketch

Reduce to the case where H is dihedral and use the faithful
irreducible complex representation to construct a presentation of G

When φ is trivial on Z (G ), φ corresponds to a two-dimensional
representation of a dihedral group G

Explicitly construct a representation with universal deformation ring
different from Zp

Show that the representations with universal deformation ring
different from Zp are a full orbit of the character group of G

Associate to the kernels of each of these representations a linear
diophantine equation with coefficients in a cyclic group, and use the
character group of G to make a combinatorial argument
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Thank You

THANK YOU!
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