The varieties of semi-conformal vectors of vertex operator algebras

Zongzhu Lin

Kansas State University

Conference on Geometric Methods in Representation Theory

University of Missouri
November 20, 2016

1. Motivations

- moduli problem in representation theory is to classify isomorphism classes of objects.
- The moduli problem always has the form of an algebraic variety X together with an algebraic group G acting on X. Hence the goal is to understand the invariants of " X / G " in the many different ways.
- This work is to apply the geometric ideas to theory of vertex operator algebras with influence of such ideology.

2. Vertex operator algebras

Vertex algebra (VA): $\left(V, Y^{V}, 1^{V}\right)$.

- $\quad V-$ a \mathbb{C}-vector space
- $Y^{V}: V \rightarrow \operatorname{End}_{\mathbb{C}}(V)\left[\left[z^{-1}, z\right]\right]$, (state-field corresp.)

$$
v \mapsto Y^{V}(v, z)=\sum_{n} v_{n} z^{-n-1}, v_{n} \in \operatorname{End}_{\mathbb{C}}(V)
$$

such that $\left.Y^{V}(V, z) V \subseteq V\left[z^{-1}, z\right]\right]$. Such $Y(v, z)$ are called fields and elements v in V are called states.

- (the locality property)
$\left(z_{1}-z_{2}\right)^{k}\left[Y\left(u, z_{1}\right), Y\left(v, z_{2}\right)\right]=0$ for some $k=k(v, u)>0$
- $Y^{V}(1, z)=I d$, and $Y^{V}(v, z) 1 \in v+z V[[z]]$.
- there is a linear operator $D: V \rightarrow V$ such that

$$
Y(D(v), z)=\frac{d}{d z} Y(v, z)
$$

Remark: The locality together with the operator D implies the Jacobi identity which can be written as

$$
\begin{array}{r}
\sum_{i=0}^{\infty}(-1)^{i}\binom{l}{i}\left(u_{m+l-i} v_{n+i}-(-1)^{l} v_{n+l-i} u_{m+i}\right) \\
=\sum_{i=0}^{\infty}\binom{m}{i}\left(u_{l+i}(v)\right)_{m+n-i}
\end{array}
$$

for all $l, m, n \in \mathbb{Z}$.

Equivalently, taking $l=0$,

$$
\left[u_{m}, v_{n}\right]=\sum_{i=0}^{\infty}\binom{m}{i}\left(u_{i}(v)\right)_{m+n-i}
$$

for all $n, m \in \mathbb{Z}$.

Vertex operator algebra (VOA): $\left(V, Y^{V}, 1^{V}, \omega^{V}\right)$.

- $\left(V, Y^{V}, \mathbf{1}^{V}\right)$ is a vertex algebra and
- $\omega \in V$ such that for $Y^{V}(\omega, z)=\sum_{n} L(n) z^{-n-2}$ such
that the span of $\{L(n): n \in \mathbb{Z}\}$ is a Lie algebra satisfying the following relations:

$$
[L(m), L(n)]=(m-n) L(m+n)+\frac{m^{3}-m}{12} \delta_{m+n, 0} c
$$

and is a Virasoro Lie algebra (a central extension of the Witt Lie algebra of vector fields: $\left.\left\langle t^{n} \frac{d}{d t}\right\rangle\right)$, with $L(n)=-t^{n+1} \frac{d}{d t}$ on $\mathbb{C}\left[t, t^{-1}\right]$

- $L(-1)=D$.

On a VA, there could be many conformal structures! Example of a vertex algebra Any commutative algebra A is a vertex algebra with
$Y(a, z)=a_{-1}: V \rightarrow V$ is the multiplication of a on A and D and 1 the identity of A. It is also a vertex operator algebra with trivial Virasoro Lie algebra module structure, i.e., $\omega=0$.
V-modules: (M, Y_{M}) (for VA).

$$
Y_{M}(v, z)=\sum v_{n} z^{-n-1}, \quad v_{n} \in \operatorname{End}_{\mathbb{C}}(M)
$$

which are fields on M and the locality property holds and the associativity holds:

$$
\begin{aligned}
& \left(z_{0}+z_{1}\right)^{k}\left(Y_{M}\left(Y\left(u, z_{0}\right) v, z_{1}\right) x\right. \\
& \left.\quad=\left(z_{0}+z_{1}\right)^{k} Y_{M}\left(u, z_{0}+z_{1}\right) Y_{M}\left(v, z_{1}\right)\right) x
\end{aligned}
$$

for all $u, v \in V$ and $x \in M$ and some $k=k(u, x)>0$.

If A is a commutative algebra and viewed as vertex algebra, then vertex algebra modules are exactly the modules of the commutative algebra.

Fact: the module category for a vertex algebra is an abelian category.

If V is a vertex operator algebra, any vertex algebra module (M, Y_{M}^{V}) automatically has a module structure of the Virasoro Lie algebra defined by the operators $L_{M}^{V}(n)$ on M from

$$
Y_{M}^{V}\left(\omega^{V}, z\right)=\sum_{n} L_{M}^{V}(n) z^{-n-2} .
$$

There are more conditions on representations of VOA: $L(0)$ is semisimple with finite dimensional eigenspaces and eigenvalues (weights) should be bounded below (similar to category \mathcal{O} but corresponding to lowest weights).

3. Semi-conformal subalgebras

A VA-homomorphism
$f:\left(W, Y^{W}, \mathbf{1}^{W}\right) \rightarrow\left(V, Y^{V}, \mathbf{1}^{V}\right)$
$f\left(Y^{W}\left(w_{1}, z\right) w_{2}\right)=Y^{V}\left(f\left(w_{1}\right), z\right) f\left(w_{2}\right), f\left(1^{W}\right)=1^{V}$.
For a VA-homomorphism $f:\left(W, Y^{W}, \mathbf{1}^{W}, \omega^{W}\right) \rightarrow$ $\left(V, Y^{V}, \mathbf{1}^{V}, \omega^{V}\right)$.
f is conformal if $f\left(\omega^{W}\right)=\omega^{V}$, which is equivalent to

$$
f \circ L^{W}(n)=L^{V}(n) \circ f \text { for all } n \in \mathbb{Z}
$$

i.e., a homomorphism of Virasoro modules.
f is semi-conformal if

$$
f \circ L^{W}(n)=L^{V}(n) \circ f \text { for all } n \geq-1
$$

If $f: W \subseteq V$, then $Y^{W}=\left.Y^{V}\right|_{W}$ and we call $\left(W, Y^{W}, 1^{W}, \omega^{W}\right.$ a conformal (semi-conformal) subVOA of $\left(V, Y^{V}, \mathbf{1}^{V}, \omega^{V}\right)$. Definition 1. For any $\operatorname{VOA}(V, Y, \mathbf{1}, \omega)$ we define

- $\operatorname{ScAlg}\left(V, \omega^{V}\right)=\left\{\left(W, \omega^{W}\right) \subseteq\left(V, \omega^{V}\right)\right.$ semi conf. subalg $\}$
- $\operatorname{Sc}\left(V, \omega^{V}\right)=\left\{\omega^{\prime} \in V \mid\right.$ a semi-conformal vector $\}$

Theorem 1. For any vertex operator algebra ($V, Y, \mathbf{1}, \omega$), the set $\mathrm{Sc}\left(V, \omega^{V}\right)$ of semi-conformal vectors of $\left(V, \omega^{V}\right)$ is an affine algebraic variety.

In fact, the equations for the variety $\operatorname{Sc}\left(V, \omega^{V}\right)$ are

$$
\left\{\begin{array}{l}
L(0) \omega^{\prime}=2 \omega^{\prime} \tag{1}\\
L(1) \omega^{\prime}=0 ; \\
L(2) \omega^{\prime}=\frac{1}{2} c \mathbf{1} ; \\
L^{\prime}(-1) \omega^{\prime}=L(-1) \omega^{\prime} \\
L(n) \omega^{\prime}=0, n \geq 3
\end{array}\right.
$$

Theorem 2. For any vertex operator algebra ($V, Y, 1, \omega$) and any vertex subalgebra W, there is at most one conformal structure $\omega^{W} \in W$ on W such that (W, ω^{W}) is semi-conformal vertex operator subalgebra.
Theorem 3. If $\left(W, Y^{W}, 1^{W}, \omega^{W}\right) \subseteq\left(V, Y^{V}, 1^{V}, \omega^{V}\right)$ is a semi-conformal subVOA, then $\operatorname{Sc}\left(W, \omega^{W}\right) \subseteq \operatorname{Sc}\left(V, \omega^{V}\right)$

Affine vertex algebras

Example 1.• Let \mathfrak{g} be a Lie algebra, with a nondegenerate invariant symmetric bilinear form $\langle\cdot, \cdot\rangle$. Invariant means $\langle[x, y], z\rangle=\langle x,[y, z]\rangle$.

- The corresponding affine Lie algebra with C central is

$$
\widehat{\mathfrak{g}}=\mathfrak{g}\left[t, t^{-1}\right] \oplus \mathbb{C} C
$$

with Lie structure

$$
\left[x t^{n}, y t^{m}\right]=[x, y] t^{n+m}+n \delta_{n+m, 0} C
$$

$$
\widehat{\mathfrak{g}}_{+}=\mathfrak{g}[t] \oplus \mathbb{C} C \subseteq \widehat{\mathfrak{g}} \text { is a Lie subalgebra. }
$$

$V_{\widehat{\mathfrak{g}}}(l, 0)=U(\widehat{\mathfrak{g}}) \otimes_{U\left(\widehat{\mathfrak{g}}_{+}\right)} \mathbb{C}_{l}$ (the Verma module)
has a vertex algebra structure.

- $C=l \in \mathbb{C}$ is called the level.
- $v^{+}=1 \otimes 1$ is the generator of the $\widehat{\mathfrak{g}}$-module, i.e, the highest weight vector.
- $L_{\widehat{\mathfrak{g}}}(l, 0)$ the irreducible quotient of $V_{\widehat{\mathfrak{g}}}(l, 0)$ as $\widehat{\mathfrak{g}}$ module.
- Both $V_{\widehat{\mathfrak{g}}}(l, 0)$ and $L_{\widehat{\mathfrak{g}}}(l, 0)$ have a vertex algebra structure such that

$$
Y\left(x t^{-1} v^{+}, z\right)=\sum_{n \in \mathbb{Z}} x t^{n} z^{-n-1}
$$

with $x t^{n}$ acting on \widehat{g}-modules. With a few exceptions of $l \in \mathbb{C}$.

- Both $V_{\widehat{\mathfrak{g}}}(l, 0)$ and $L_{\widehat{\mathfrak{g}}}(l, 0)$ have a conformal structure making them as vertex operator algebras.
- Certain irre. $\widehat{\mathfrak{g}}$-modules $L_{\widehat{\mathfrak{g}}}(l, \lambda)$ are irre. modules for the both VOAs.

Here λ can be thought as irreducible \mathfrak{g}-modules.

Example 2.• $\mathfrak{h} \subseteq \mathfrak{g}$ is a subalgebra such that the restriction of the bilinear form $\langle\cdot, \cdot\rangle$ is degenerate and $\widehat{\mathfrak{h}}$ is a subalgebra of $\hat{\mathfrak{g}}$.

- $\quad L_{\widehat{\mathfrak{h}}}(l, 0)=U(\widehat{\mathfrak{h}}) v^{+} \subseteq L_{\widehat{\mathfrak{g}}}(l, 0)$ is an irr. $\widehat{\mathfrak{h}}$-module and has VOA structure. It is not a subVOA, but a semi-comformal subVOA of $L_{\widehat{\mathfrak{g}}}(l, 0)$.
- If \mathfrak{h} is a maximal torus, $L_{\widehat{\mathfrak{h}}}(l, 0)=V_{\widehat{\mathfrak{h}}}(l, 0)$ is the Heisenberg VOA.

4. Centralizers in VOA

For any vertex algebra ($V, Y^{V}, \mathbf{1}^{V}$) and any subset S of V, the centralizer

$$
C_{V}(S)=\left\{v \in V \mid\left[Y^{V}\left(v, z_{1}\right), Y^{V}\left(s, z_{2}\right)\right]=0, \forall, s \in S\right\} .
$$

Consequences:

- $\quad C_{V}(S)$ is always a vertex subalgebra.
- $C_{V}(S)=C_{V}(\langle S\rangle)$ with $\langle S\rangle$ being the vertex subalgebra generated by S.
- $C_{W}(V)=\left\{w \in W \mid w_{n}(v)=0 \forall n \geq 0, \forall v \in V\right\}$
- $C_{W}(V)=\left\{w \in W \mid v_{n}(w)=0 \forall n \geq 0, \forall v \in V\right\}$
- $C_{W}(V)$ is a sub VA of W.
- $C_{V}(V)$ is called the center of the VA V (always a commutative associative algebra).
- $\quad C_{V}(W)=\operatorname{hom}_{W-M o d}(W, V)$, space of all W-module homorphisms of $W \subseteq V$ is a vertex subalgebra.

If $\left(W, Y^{W}, \mathbf{1}^{W}, \omega^{W}\right) \subseteq\left(V, Y^{V}, \mathbf{1}^{V}, \omega^{V}\right)$ are VOAs, $C_{V}(W)$ needs not be a VOA.
Theorem 4. If $\left(W, Y^{W}, \mathbf{1}^{W}, \omega^{W}\right) \subseteq\left(V, Y^{V}, \mathbf{1}^{V}, \omega^{V}\right)$ is a semi-conformal subVOA, then $C_{V}(W)$ also a semiconformal sub VOA with $\omega^{C_{V}}(W)=\omega^{V}-\omega^{W}$.

- $C_{V}(W)=\operatorname{ker}\left(L^{W}(-1): V \rightarrow V\right)$
where $Y^{V}\left(\omega^{W}, z\right)=\sum L^{W}(n) z^{-n-2}$
- $C_{V}(V)=\mathbb{C} 1^{V}$ if V is a simple VOA.

A vertex algebra is called central if $C_{V}(V)=\mathbb{C} 1$.
Theorem 5. If $\left(W, Y^{W}, 1^{W}, \omega^{W}\right) \subseteq\left(V, Y^{V}, 1^{V}, \omega^{V}\right)$ is a semi-conformal subVOA, then the map

$$
\operatorname{Sc}\left(W, \omega^{W}\right) \times \operatorname{Sc}\left(C_{V}(W), \omega^{C_{V}(W)}\right) \rightarrow \operatorname{Sc}\left(V, \omega^{V}\right)
$$

defined by $\left(\omega^{\prime}, \omega^{\prime \prime}\right) \mapsto \omega^{\prime}+\omega^{\prime \prime}$ is injective.

Poset structure on $\operatorname{Sc}(V, \omega)$

For each $\omega^{\prime} \in \operatorname{Sc}(V, \omega)$,

$$
V\left(\omega^{\prime}\right)=C_{V}\left(\omega-\omega^{\prime}\right)
$$

The map $\operatorname{ScAlg}(V, \omega) \rightarrow \operatorname{Sc}(V, \omega)$
$\omega^{\prime} \mapsto V\left(\omega^{\prime}\right)$ is an injection. is a semi-conformal subalgebra of V.
Definition 2. We say $\omega^{\prime} \leq \omega^{\prime \prime}$ if $V\left(\omega^{\prime}\right) \subseteq V\left(\omega^{\prime \prime}\right)$.

There is an order reversing map $\mathrm{Sc}(V, \omega) \rightarrow \mathrm{Sc}(V, \omega)$ such that $\omega^{\prime} \mapsto \omega-\omega^{\prime}$.

Example 3. For for simple \mathfrak{g} and $\mathfrak{h} \subseteq \mathfrak{g}$ Cartan subalgebra $L_{\widehat{\mathfrak{h}}}(l, 0) \subseteq L_{\widehat{\mathfrak{g}}}(l, 0)$. The semiconformal sub VOA $K(\mathfrak{g}, l):=C_{L_{\widehat{\mathfrak{g}}}(l, 0)}\left(L_{\widehat{\mathfrak{h}}}(l, 0)\right)$ is called a parafermion studied intensively by physists.

Conjecture 1. $K(\mathfrak{g}, l)$ is always rationa!!

More general case is speculated. If W is rational and $V \subseteq W$ is semi-conformal and rational, then $C_{W}(V)$ is also rational.

5. Tensor Products

For two VAs V^{\prime} and $V^{\prime \prime}$, the tensor product VA structure on $V^{\prime} \otimes V^{\prime \prime}$ is defined by

$$
Y^{V^{\prime} \otimes V^{\prime \prime}}\left(v^{\prime} \otimes v^{\prime \prime}, z\right)=Y^{V^{\prime}}\left(v^{\prime}, z\right) \otimes Y^{V^{\prime \prime}}\left(v^{\prime \prime}, z\right)
$$

and $1_{V^{\prime} \otimes V^{\prime \prime}}=\mathbf{1}_{V^{\prime}} \otimes \mathbf{1}_{V^{\prime \prime}}$.

We set $W=V^{\prime} \otimes V^{\prime \prime}$ and $V=V^{\prime} \otimes \mathbf{1}^{V^{\prime \prime}} . C_{W}(V) \supseteq$ $1^{V^{\prime}} \otimes V^{\prime \prime}$. If both V^{\prime} and $V^{\prime \prime}$ are VOAs with $\omega^{V^{\prime}}$ and $\omega^{V^{\prime \prime}}$, then $V^{\prime} \otimes V^{\prime \prime}$ is also a VOA with

$$
\omega^{V^{\prime} \otimes V^{\prime \prime}}=\omega^{\prime} \otimes 1^{V^{\prime \prime}}+1^{V^{\prime}} \otimes \omega^{V^{\prime \prime}}
$$

Thus $V^{\prime} \otimes \mathbf{1}^{\prime \prime}$ is a semi-conformal subalgebra of $V^{\prime} \otimes V^{\prime \prime}$ and $C_{V^{\prime} \otimes V^{\prime \prime}}\left(V^{\prime} \otimes \mathbf{1}^{V^{\prime \prime}}\right)$ also a semi-conformal in $V^{\prime} \otimes V^{\prime \prime}$ with conformal element $1^{V^{\prime}} \otimes \omega^{V^{\prime \prime}}$.
Proposition 1. $C_{V^{\prime} \otimes V^{\prime \prime}}\left(V^{\prime} \otimes 1^{V^{\prime \prime}}\right)=C_{V^{\prime}}\left(V^{\prime}\right) \otimes V^{\prime \prime}$. In particular, If V^{\prime} is a simple vertex operator algebra, then $C_{V^{\prime} \otimes V^{\prime \prime}}\left(V^{\prime} \otimes 1^{V^{\prime \prime}}\right)=1^{V^{\prime}} \otimes V^{\prime \prime}$.
Proposition 2. If V^{\prime} and $V^{\prime \prime}$ are two simple VOAs, then $V^{\prime} \otimes V^{\prime \prime}$ is a simple VOA.
Example 4. For a finite dim. simple Lie algebra \mathfrak{g}, $L_{\widehat{\mathfrak{g}}}(l, 0)^{\otimes n}$ is a simple VOA and $L_{\widehat{\mathfrak{g}}}(n l, 0) \subseteq L_{\widehat{\mathfrak{g}}}(l, 0)^{\otimes n}$ is a semiconformal sub VOA.

Example 5. If L is an even lattice and V_{L} is a lattice

VOA, then $V_{L}^{\otimes n} \cong V_{L^{\times n}}$. And $V_{\sqrt{n} L} \subseteq V_{L^{\times n}}$ is a semiconformal subVOA.
Question 1. Decompose $L_{\widehat{\mathfrak{g}}}(l, 0)^{\otimes n}$ as $L_{\widehat{\mathfrak{g}}}(n l, 0)$-modules.
More generally, given a composition $\left(l_{1}, \cdots l_{s}\right)$, and simple $L_{\widehat{\mathfrak{g}}}\left(l_{i}, 0\right)$-modules M_{i}, then $M_{1} \otimes \cdots \otimes M_{s}$ is a module for $L_{\widehat{\mathfrak{g}}}\left(l_{1}, 0\right) \otimes \cdots \otimes L_{\widehat{\mathfrak{g}}}\left(l_{s}, 0\right)$. $L_{\widehat{\mathfrak{g}}}\left(l_{1}+\cdots+l_{s}, 0\right) \subseteq L_{\widehat{\mathfrak{g}}}\left(l_{1}, 0\right) \otimes \cdots \otimes L_{\widehat{\mathfrak{g}}}\left(l_{s}, 0\right)$ is semiconformal subVOA.

Question 2. Then decompose $M_{1} \otimes \cdots \otimes M_{s}$ as $L_{\widehat{\mathfrak{g}}}\left(l_{1}+\right.$ $\left.\cdots+l_{s}, 0\right)$-modules.

These are Schur-Weyl duality of questions.
6. Heisenberg vertex operator algebras - Let \mathfrak{h} be a d-dim. vector space (abelian Lie alg.) $\langle\cdot, \cdot\rangle$ a nondegenerate symmetric bilinear form on \mathfrak{h} - $\mathfrak{h}=\mathbb{C}\left[t, t^{-1}\right] \otimes \mathfrak{h} \oplus \mathbb{C} C$ is the affiniziation of the abelian Lie algebra \mathfrak{h} with

$$
\left[\beta_{1} \otimes t^{m}, \beta_{2} \otimes t^{n}\right]=m\left\langle\beta_{1}, \beta_{2}\right\rangle \delta_{m,-n} C .
$$

- $\hat{\mathfrak{h}}_{+}=\mathbb{C}[t] \otimes \mathfrak{h} \oplus \mathbb{C} C$ is an Abelian subalgebra.
- For $\forall \lambda \in \mathfrak{h}$, we can define an one-dimensional $\mathfrak{h} \geq 0_{-}$ module $\mathbb{C} e^{\lambda}$ by the actions $\left(h \otimes t^{m}\right) \cdot e^{\lambda}=\langle\lambda, h\rangle \delta_{m, 0} e^{\lambda}$
and $C \cdot e^{\lambda}=e^{\lambda}$ for $h \in \mathfrak{h}$ and $m \geq 0$.
- Set

$$
V_{\widehat{\mathfrak{h}}}(1, \lambda)=U(\widehat{\mathfrak{h}}) \otimes_{U(\mathfrak{h} \geq 0)} \mathbb{C} e^{\lambda} \cong S\left(t^{-1} \mathbb{C}\left[t^{-1}\right] \otimes \mathfrak{h}\right)
$$

- Choose an orthonormal basis $\left\{h_{1}, \cdots, h_{d}\right\}$ of \mathfrak{h} Define $\omega=\frac{1}{2} \sum_{i=1}^{d} h_{i}(-1)^{2} \cdot \mathbf{1} \in V_{\widehat{\mathfrak{h}}}(1,0)$.
Then $\left(V_{\widehat{h}}(1,0), Y, \mathbf{1}, \omega\right)$ has a vertex operator algebra structure and
- $\quad\left(V_{\widehat{\mathfrak{h}}}(1, \lambda), Y\right)$ becomes an irreducible module of $\left(V_{\widehat{\mathfrak{h}}}(1,0)\right.$ for any $\lambda \in \mathfrak{h}$.
- Each $\omega^{\prime} \in \operatorname{Sc}(V, \omega)$ correspond to a linear map $A_{\omega^{\prime}}$: $\mathfrak{h} \rightarrow \mathfrak{h}$ which is a projection to a regular subspace of \mathfrak{h}.
Theorem 6. 1) The map $\rho: \omega^{\prime} \mapsto \operatorname{Im}\left(\mathcal{A}_{\omega^{\prime}}\right)$ is an ordering preserving $\operatorname{Aut}\left(V_{\widehat{\mathfrak{h}}}(1,0), \omega\right)$-equivariant bijection form $\operatorname{Sc}\left(V_{\widehat{\mathfrak{h}}}(1,0), \omega\right)$ to $\operatorname{Reg}(\mathfrak{h})$;

2) $\operatorname{Sc}\left(V_{\widehat{h}}(1,0), \omega\right)$ has exactly $d+1$ orbits under the group $\operatorname{Aut}\left(V_{\widehat{\mathfrak{h}}}(1,0), \omega\right)$-action and each $0 \leq i \leq d$ corresponds to the orbit
$\operatorname{Sc}\left(V_{\widehat{\mathfrak{h}}}(1,0), \omega\right)_{i}=\left\{\mathfrak{h}^{\prime} \subset \mathfrak{h} \mid \mathfrak{h}^{\prime}\right.$ is i-dim. reg. subs. of $\left.\mathfrak{h}\right\}$
3) There exists a longest chain in $\operatorname{Sc}\left(V_{\widehat{\mathfrak{h}}}(1,0), \omega\right)$ such that the length of this chain equals to d : there exist $\omega^{1}, \cdots, \omega^{d-1} \in \operatorname{Sc}\left(V_{\widehat{\mathfrak{h}}}(1,0), \omega\right)$ such that

$$
0=\omega^{0}<\omega^{1}<\cdots<\omega^{d-1}<\omega^{d}=\omega .
$$

Theorem 7. For each $\omega^{\prime} \in \operatorname{Sc}\left(V_{\widehat{\mathfrak{h}}}(1,0), \omega\right)$, the following assertions hold.

1) $\operatorname{Im} \mathcal{A}_{\omega^{\prime}}$ generates a Heisenberg vertex operator aldebra

$$
V_{\widehat{\operatorname{Im} \mathcal{A}_{\omega^{\prime}}}}(1,0)=C_{V_{\widehat{\mathfrak{h}}}(1,0)}\left(<\omega-\omega^{\prime}>\right)
$$

and $\operatorname{Ker} \mathcal{A}_{\omega^{\prime}}$ generates a Heisenberg vertex operator algebra

$$
\left.V_{\widehat{\operatorname{Ker} \mathcal{A}_{\omega^{\prime}}}}(1,0)=C_{V_{\hat{h}}(1,0)}\left(<\omega^{\prime}\right\rangle\right)
$$

$$
\begin{aligned}
& \text { 2) } C_{V_{\hat{h}}(1,0)}\left(V_{\widehat{\operatorname{Ker} \mathcal{A}_{\omega^{\prime}}}}(1,0)\right)=V_{\mathrm{Im} \mathcal{A}_{\omega^{\prime}}}(1,0) \\
& \left.C_{V_{\hat{\mathrm{h}}}(1,0)}\left(V_{\mathrm{Im} \mathcal{A}_{\omega^{\prime}}}(1,0)\right)\right)=V_{\widehat{\operatorname{Ker} \mathcal{A}_{\omega^{\prime}}}}(1,0) ;
\end{aligned}
$$

3) $V_{\widehat{\mathfrak{h}}}(1,0) \cong C_{V_{\widehat{h}}(1,0)}\left(<\omega^{\prime}>\right) \otimes C_{V_{\widehat{\mathfrak{h}}}(1,0)}\left(C_{V_{\widehat{\mathfrak{h}}}(1,0)}(<\right.$ $\left.\omega^{\prime}>\right)$).

7. Isomorphism Problem

Theorem 8. Let (V, ω) be a nondegenerate simple CFT type vertex operator algebra generated by V_{1}. Assume that $L(1) V_{1}=0$. If for each $\omega^{\prime} \in \operatorname{Sc}(V, \omega)$, there are

$$
\begin{equation*}
V \cong C_{V}\left(C_{V}\left(<\omega^{\prime}>\right)\right) \otimes C_{V}\left(<\omega^{\prime}>\right) \tag{2}
\end{equation*}
$$

then (V, ω) is isomorphic to the Heisenberg vertex operator algebra $\left(V_{\mathfrak{h}}(1,0), \omega\right)$ with $\mathfrak{h}=V_{1}$.
Theorem 9. Let (V, ω) be a nondegenerate simple CFT type vertex operator algebra generated by V_{1}. Assume $\operatorname{dim} V_{1}=d$ and $L(1) V_{1}=0$. If there exists a chain $0=\omega^{0}<\omega^{1}<\cdots<\omega^{d-1}<\omega^{d}=\omega$ in $\operatorname{Sc}(V, \omega)$ such that $\operatorname{dim} C_{V}\left(C_{V}\left(<\omega^{i}-\omega^{i-1}>\right)\right)_{1} \neq 0$, for $i=$ $1, \cdots, d$, then V is isomorphic to the Heisenberg vertex operator algebra $\left(V_{\widehat{\mathfrak{h}}}(1,0), \omega\right)$ with $\mathfrak{h}=V_{1}$.
THANK YOU!

