The varieties of semi-conformal vectors of vertex operator algebras

Zongzhu Lin

Kansas State University

Conference on Geometric Methods in

Representation Theory

University of Missouri November 20, 2016

1. Motivations

moduli problem in representation theory is to classify isomorphism classes of objects.

• The moduli problem always has the form of an algebraic variety X together with an algebraic group G acting on X. Hence the goal is to understand the invariants of "X/G" in the many different ways.

• This work is to apply the geometric ideas to theory of vertex operator algebras with influence of such ideology.

2. Vertex operator algebras

Vertex algebra (VA): $(V, Y^V, 1^V)$.

- V— a \mathbb{C} -vector space
- $Y^V: V \to \operatorname{End}_{\mathbb{C}}(V)[[z^{-1}, z]], \text{ (state-field corresp.)}$

$$v \mapsto Y^V(v,z) = \sum_n v_n z^{-n-1}, v_n \in \mathsf{End}_{\mathbb{C}}(V)$$

such that $Y^V(V,z)V \subseteq V[z^{-1},z]]$. Such Y(v,z) are called *fields* and elements v in V are called *states*.

• (the *locality property*)

 $(z_1-z_2)^k[Y(u,z_1),Y(v,z_2)] = 0$ for some k = k(v,u) > 0

- $Y^{V}(1,z) = Id$, and $Y^{V}(v,z)1 \in v + zV[[z]].$
- there is a linear operator $D: V \to V$ such that

$$Y(D(v), z) = \frac{d}{dz}Y(v, z)$$

Remark: The locality together with the operator D implies the Jacobi identity which can be written as

$$\sum_{i=0}^{\infty} (-1)^{i} {l \choose i} (u_{m+l-i}v_{n+i} - (-1)^{l}v_{n+l-i}u_{m+i})$$
$$= \sum_{i=0}^{\infty} {m \choose i} (u_{l+i}(v))_{m+n-i}$$

for all $l, m, n \in \mathbb{Z}$.

Equivalently, taking l = 0,

$$[u_m, v_n] = \sum_{i=0}^{\infty} {m \choose i} (u_i(v))_{m+n-i}$$

for all $n, m \in \mathbb{Z}$.

Vertex operator algebra (VOA): $(V, Y^V, 1^V, \omega^V)$.

- $(V, Y^V, \mathbf{1}^V)$ is a vertex algebra and
- $\omega \in V$ such that for $Y^V(\omega, z) = \sum_n L(n) z^{-n-2}$ such

that the span of $\{L(n) : n \in \mathbb{Z}\}$ is a Lie algebra satisfying the following relations:

$$[L(m), L(n)] = (m - n)L(m + n) + \frac{m^3 - m}{12}\delta_{m+n,0}c$$

and is a Virasoro Lie algebra (a central extension of
the Witt Lie algebra of vector fields: $\langle t^n \frac{d}{dt} \rangle$), with
 $L(n) = -t^{n+1} \frac{d}{dt}$ on $\mathbb{C}[t, t^{-1}]$
• $L(-1) = D$.

On a VA, there could be many conformal structures! Example of a vertex algebra Any commutative algebra A is a vertex algebra with

 $Y(a,z) = a_{-1} : V \to V$ is the multiplication of a on Aand D and 1 the identity of A. It is also a vertex operator algebra with trivial Virasoro Lie algebra module structure, i.e., $\omega = 0$.

V-modules: (M, Y_M) (for VA).

 $Y_M(v,z) = \sum v_n z^{-n-1}, \quad v_n \in \operatorname{End}_{\mathbb{C}}(M)$

which are fields on M and the locality property holds and the associativity holds:

$$(z_0 + z_1)^k (Y_M(Y(u, z_0)v, z_1)x)$$

= $(z_0 + z_1)^k Y_M(u, z_0 + z_1) Y_M(v, z_1))x$

for all $u, v \in V$ and $x \in M$ and some k = k(u, x) > 0.

If A is a commutative algebra and viewed as vertex algebra, then vertex algebra modules are exactly the modules of the commutative algebra.

Fact: the module category for a vertex algebra is an abelian category.

If V is a vertex operator algebra, any vertex algebra module (M, Y_M^V) automatically has a module structure of the Virasoro Lie algebra defined by the operators $L_M^V(n)$ on M from

$$Y_M^V(\omega^V, z) = \sum_n L_M^V(n) z^{-n-2}.$$

There are more conditions on representations of VOA: L(0) is semisimple with finite dimensional eigenspaces and eigenvalues (weights) should be bounded below (similar to category \mathcal{O} but corresponding to lowest weights).

3. Semi-conformal subalgebras

A VA-homomorphism $f: (W, Y^W, \mathbf{1}^W) \rightarrow (V, Y^V, \mathbf{1}^V)$

 $f(Y^W(w_1, z)w_2) = Y^V(f(w_1), z)f(w_2), \ f(\mathbf{1}^W) = \mathbf{1}^V.$

For a VA-homomorphism $f : (W, Y^W, \mathbf{1}^W, \omega^W) \rightarrow (V, Y^V, \mathbf{1}^V, \omega^V)$.

f is conformal if $f(\omega^W)=\omega^V,$ which is equivalent to

 $f \circ L^W(n) = L^V(n) \circ f$ for all $n \in \mathbb{Z}$

i.e., a homomorphism of Virasoro modules. *f* is semi-conformal if

$$f \circ L^W(n) = L^V(n) \circ f$$
 for all $n \ge -1$.

If $f: W \subseteq V$, then $Y^W = Y^V|_W$ and we call $(W, Y^W, \mathbf{1}^W, \omega^W)$ a conformal (semi-conformal) subVOA of $(V, Y^V, \mathbf{1}^V, \omega^V)$. **Definition 1.** For any VOA $(V, Y, \mathbf{1}, \omega)$ we define

• ScAlg
$$(V, \omega^V) = \{(W, \omega^W) \subseteq (V, \omega^V) \text{ semi conf. subalg}\}$$

• $Sc(V, \omega^V) = \{\omega' \in V | \text{ a semi-conformal vector} \}$ Theorem 1. For any vertex operator algebra $(V, Y, 1, \omega)$, the set $Sc(V, \omega^V)$ of semi-conformal vectors of (V, ω^V) is an affine algebraic variety. In fact, the equations for the variety $Sc(V, \omega^V)$ are

$$\begin{aligned}
L(0)\omega' &= 2\omega'; \\
L(1)\omega' &= 0; \\
L(2)\omega' &= \frac{1}{2}c1; \\
L'(-1)\omega' &= L(-1)\omega'; \\
L(n)\omega' &= 0, n \ge 3.
\end{aligned}$$
(1)

Theorem 2. For any vertex operator algebra $(V, Y, 1, \omega)$ and any vertex subalgebra W, there is at most one conformal structure $\omega^W \in W$ on W such that (W, ω^W) is semi-conformal vertex operator subalgebra. **Theorem 3.** If $(W, Y^W, \mathbf{1}^W, \omega^W) \subseteq (V, Y^V, \mathbf{1}^V, \omega^V)$ is a semi-conformal subVOA, then $Sc(W, \omega^W) \subseteq Sc(V, \omega^V)$

Affine vertex algebras

Example 1. • Let \mathfrak{g} be a Lie algebra, with a nondegenerate invariant symmetric bilinear form $\langle \cdot, \cdot \rangle$. Invariant means $\langle [x, y], z \rangle = \langle x, [y, z] \rangle$.

• The corresponding affine Lie algebra with C central is

$$\widehat{\mathfrak{g}} = \mathfrak{g}[t, t^{-1}] \oplus \mathbb{C}C$$

with Lie structure

 $[xt^{n}, yt^{m}] = [x, y]t^{n+m} + n\delta_{n+m,0}C.$

 $\widehat{\mathfrak{g}}_+ = \mathfrak{g}[t] \oplus \mathbb{C}C \subseteq \widehat{\mathfrak{g}}$ is a Lie subalgebra.

 $V_{\widehat{\mathfrak{g}}}(l,0) = U(\widehat{\mathfrak{g}}) \otimes_{U(\widehat{\mathfrak{g}}_{+})} \mathbb{C}_{l}$ (the Verma module) has a vertex algebra structure.

• $C = l \in \mathbb{C}$ is called the level.

• $v^+ = 1 \otimes 1$ is the generator of the \hat{g} -module, i.e, the highest weight vector.

• $L_{\widehat{\mathfrak{g}}}(l,0)$ the irreducible quotient of $V_{\widehat{\mathfrak{g}}}(l,0)$ as $\widehat{\mathfrak{g}}$ -module.

• Both $V_{\widehat{\mathfrak{g}}}(l,0)$ and $L_{\widehat{\mathfrak{g}}}(l,0)$ have a vertex algebra structure such that

$$Y(xt^{-1}v^+, z) = \sum_{n \in \mathbb{Z}} xt^n z^{-n-1}$$

with xt^n acting on \hat{g} -modules. With a few exceptions of $l \in \mathbb{C}$.

• Both $V_{\widehat{\mathfrak{g}}}(l,0)$ and $L_{\widehat{\mathfrak{g}}}(l,0)$ have a conformal structure making them as vertex operator algebras.

• Certain irre. $\hat{\mathfrak{g}}$ -modules $L_{\hat{\mathfrak{g}}}(l,\lambda)$ are irre. modules for the both VOAs.

Here λ can be thought as irreducible g-modules.

Example 2. • $\mathfrak{h} \subseteq \mathfrak{g}$ is a subalgebra such that the restriction of the bilinear form $\langle \cdot, \cdot \rangle$ is degenerate and $\widehat{\mathfrak{h}}$ is a subalgebra of $\widehat{\mathfrak{g}}$.

• $L_{\widehat{\mathfrak{h}}}(l,0) = U(\widehat{\mathfrak{h}})v^+ \subseteq L_{\widehat{\mathfrak{g}}}(l,0)$ is an irr. $\widehat{\mathfrak{h}}$ -module and has VOA structure. It is not a subVOA, but a semi-comformal subVOA of $L_{\widehat{\mathfrak{g}}}(l,0)$.

• If \mathfrak{h} is a maximal torus, $L_{\widehat{\mathfrak{h}}}(l,0) = V_{\widehat{\mathfrak{h}}}(l,0)$ is the Heisenberg VOA.

4. Centralizers in VOA

For any vertex algebra $(V, Y^V, \mathbf{1}^V)$ and any subset S of V, the *centralizer*

 $C_V(S) = \{ v \in V \mid [Y^V(v, z_1), Y^V(s, z_2)] = 0, \forall, s \in S \}.$

Consequences:

• $C_V(S)$ is always a vertex subalgebra.

• $C_V(S) = C_V(\langle S \rangle)$ with $\langle S \rangle$ being the vertex subalgebra generated by S.

• $C_W(V) = \{ w \in W \mid w_n(v) = 0 \ \forall n \ge 0, \forall v \in V \}$

• $C_W(V) = \{ w \in W \mid v_n(w) = 0 \ \forall n \ge 0, \forall v \in V \}$

• $C_W(V)$ is a sub VA of W.

• $C_V(V)$ is called the center of the VA V (always a commutative associative algebra).

• $C_V(W) = \hom_{W-Mod}(W, V)$, space of all W-module homorphisms of $W \subseteq V$ is a vertex subalgebra.

If $(W, Y^W, \mathbf{1}^W, \omega^W) \subseteq (V, Y^V, \mathbf{1}^V, \omega^V)$ are VOAs, $C_V(W)$ needs not be a VOA. **Theorem 4.** If $(W, Y^W, \mathbf{1}^W, \omega^W) \subseteq (V, Y^V, \mathbf{1}^V, \omega^V)$ is a semi-conformal subVOA, then $C_V(W)$ also a semi-

conformal sub VOA with $\omega^{C_V(W)} = \omega^V - \omega^W$.

•
$$C_V(W) = \ker(L^W(-1) : V \to V)$$

where $Y^V(\omega^W, z) = \sum L^W(n) z^{-n-2}$

•
$$C_V(V) = \mathbb{C}\mathbf{1}^V$$
 if V is a simple VOA.

A vertex algebra is called *central* if $C_V(V) = \mathbb{C}1$. **Theorem 5.** If $(W, Y^W, \mathbf{1}^W, \omega^W) \subseteq (V, Y^V, \mathbf{1}^V, \omega^V)$ is a semi-conformal subVOA, then the map

 $Sc(W, \omega^W) \times Sc(C_V(W), \omega^{C_V(W)}) \rightarrow Sc(V, \omega^V)$ defined by $(\omega', \omega'') \mapsto \omega' + \omega''$ is injective.

Poset structure on $Sc(V, \omega)$

For each $\omega' \in Sc(V, \omega)$,

$$V(\omega') = C_V(\omega - \omega')$$

The map $ScAlg(V, \omega) \rightarrow Sc(V, \omega)$

 $\omega' \mapsto V(\omega')$ is an injection. is a semi-conformal subalgebra of V.

Definition 2. We say $\omega' \leq \omega''$ if $V(\omega') \subseteq V(\omega'')$.

There is an order reversing map $Sc(V, \omega) \rightarrow Sc(V, \omega)$ such that $\omega' \mapsto \omega - \omega'$.

Example 3. For for simple \mathfrak{g} and $\mathfrak{h} \subseteq \mathfrak{g}$ Cartan subalgebra $L_{\widehat{\mathfrak{h}}}(l,0) \subseteq L_{\widehat{\mathfrak{g}}}(l,0)$. The semiconformal sub VOA $K(\mathfrak{g},l) := C_{L_{\widehat{\mathfrak{g}}}}(l,0)(L_{\widehat{\mathfrak{h}}}(l,0))$ is called a parafermion studied intensively by physists.

Conjecture 1. $K(\mathfrak{g}, l)$ is always rational!

More general case is speculated. If W is rational and $V \subseteq W$ is semi-conformal and rational, then $C_W(V)$ is also rational.

5. Tensor Products

For two VAs V' and V'', the tensor product VA structure on $V' \otimes V''$ is defined by

$$Y^{V'\otimes V''}(v'\otimes v'',z)=Y^{V'}(v',z)\otimes Y^{V''}(v'',z)$$

and $\mathbf{1}_{V'\otimes V''} = \mathbf{1}_{V'}\otimes \mathbf{1}_{V''}.$

We set $W = V' \otimes V''$ and $V = V' \otimes 1^{V''}$. $C_W(V) \supseteq 1^{V'} \otimes V''$. If both V' and V'' are VOAs with $\omega^{V'}$ and $\omega^{V''}$, then $V' \otimes V''$ is also a VOA with

$$\omega^{V' \otimes V''} = \omega' \otimes \mathbf{1}^{V''} + \mathbf{1}^{V'} \otimes \omega^{V''}.$$

Thus $V' \otimes \mathbf{1}''$ is a semi-conformal subalgebra of $V' \otimes V''$ and $C_{V' \otimes V''}(V' \otimes \mathbf{1}^{V''})$ also a semi-conformal in $V' \otimes V''$ with conformal element $\mathbf{1}^{V'} \otimes \omega^{V''}$.

Proposition 1. $C_{V'\otimes V''}(V'\otimes 1^{V''}) = C_{V'}(V')\otimes V''$. In particular, If V' is a simple vertex operator algebra, then $C_{V'\otimes V''}(V'\otimes 1^{V''}) = 1^{V'}\otimes V''$.

Proposition 2. If V' and V" are two simple VOAs, then $V' \otimes V''$ is a simple VOA.

Example 4. For a finite dim. simple Lie algebra \mathfrak{g} , $L_{\widehat{\mathfrak{g}}}(l,0)^{\otimes n}$ is a simple VOA and $L_{\widehat{\mathfrak{g}}}(nl,0) \subseteq L_{\widehat{\mathfrak{g}}}(l,0)^{\otimes n}$ is a semiconformal sub VOA.

Example 5. If L is an even lattice and V_L is a lattice

VOA, then $V_L^{\otimes n} \cong V_{L^{\times n}}$. And $V_{\sqrt{n}L} \subseteq V_{L^{\times n}}$ is a semiconformal subVOA.

Question 1. Decompose $L_{\widehat{\mathfrak{g}}}(l,0)^{\otimes n}$ as $L_{\widehat{\mathfrak{g}}}(nl,0)$ -modules.

More generally, given a composition $(l_1, \dots l_s)$, and simple $L_{\widehat{\mathfrak{g}}}(l_i, 0)$ -modules M_i , then $M_1 \otimes \dots \otimes M_s$ is a module for $L_{\widehat{\mathfrak{g}}}(l_1, 0) \otimes \dots \otimes L_{\widehat{\mathfrak{g}}}(l_s, 0)$. $L_{\widehat{\mathfrak{g}}}(l_1 + \dots + l_s, 0) \subseteq L_{\widehat{\mathfrak{g}}}(l_1, 0) \otimes \dots \otimes L_{\widehat{\mathfrak{g}}}(l_s, 0)$ is semiconformal subVOA.

Question 2. Then decompose $M_1 \otimes \cdots \otimes M_s$ as $L_{\hat{\mathfrak{g}}}(l_1 + \cdots + l_s, 0)$ -modules.

These are Schur-Weyl duality of questions.

6. Heisenberg vertex operator algebras

Let ħ be a d-dim. vector space (abelian Lie alg.)
⟨·,·⟩ a nondegenerate symmetric bilinear form on ħ
𝑘 = 𝔅[t,t⁻¹] ⊗ ħ ⊕ 𝔅𝔅𝔅𝔅 the affiniziation of the abelian Lie algebra ħ with

$$[\beta_1 \otimes t^m, \, \beta_2 \otimes t^n] = m \langle \beta_1, \beta_2 \rangle \delta_{m, -n} C.$$

• $\hat{\mathfrak{h}}_+ = \mathbb{C}[t] \otimes \mathfrak{h} \oplus \mathbb{C}C$ is an Abelian subalgebra.

• For $\forall \lambda \in \mathfrak{h}$, we can define an one-dimensional $\hat{\mathfrak{h}}^{\geq 0}$ module $\mathbb{C}e^{\lambda}$ by the actions $(h \otimes t^m) \cdot e^{\lambda} = \langle \lambda, h \rangle \delta_{m,0} e^{\lambda}$ and $C \cdot e^{\lambda} = e^{\lambda}$ for $h \in \mathfrak{h}$ and $m \geq 0$.

• Set

$$V_{\widehat{\mathfrak{h}}}(1,\lambda) = U(\widehat{\mathfrak{h}}) \otimes_{U(\widehat{\mathfrak{h}} \ge 0)} \mathbb{C}e^{\lambda} \cong S(t^{-1}\mathbb{C}[t^{-1}] \otimes \mathfrak{h})$$

• Choose an orthonormal basis $\{h_1, \cdots, h_d\}$ of \mathfrak{h} Define $\omega = \frac{1}{2} \sum_{i=1}^d h_i (-1)^2 \cdot 1 \in V_{\widehat{\mathfrak{h}}}(1,0)$. Then $(V_{\widehat{\mathfrak{h}}}(1,0), Y, 1, \omega)$ has a vertex operator algebra structure and

• $(V_{\widehat{\mathfrak{h}}}(1,\lambda),Y)$ becomes an irreducible module of $(V_{\widehat{\mathfrak{h}}}(1,0)$ for any $\lambda \in \mathfrak{h}$.

Each ω' ∈ Sc(V,ω) correspond to a linear map A_{ω'}:
h → h which is a projection to a regular subspace of h.
Theorem 6. 1) The map ρ : ω' → Im(A_{ω'}) is an ordering preserving Aut(V_β(1,0),ω)-equivariant bijection form Sc(V_β(1,0),ω) to Reg(h);

2) $Sc(V_{\hat{\mathfrak{h}}}(1,0),\omega)$ has exactly d+1 orbits under the group $Aut(V_{\hat{\mathfrak{h}}}(1,0),\omega)$ -action and each $0 \leq i \leq d$ corresponds to the orbit

 $Sc(V_{\widehat{\mathfrak{h}}}(1,0),\omega)_i = \{\mathfrak{h}' \subset \mathfrak{h} | \mathfrak{h}' \text{ is } i\text{-dim. reg. subsp. of } \mathfrak{h}\}$

3) There exists a longest chain in $Sc(V_{\hat{\mathfrak{h}}}(1,0),\omega)$ such that the length of this chain equals to d: there exist $\omega^1, \dots, \omega^{d-1} \in Sc(V_{\hat{\mathfrak{h}}}(1,0),\omega)$ such that

$$0 = \omega^0 < \omega^1 < \dots < \omega^{d-1} < \omega^d = \omega.$$

Theorem 7. For each $\omega' \in Sc(V_{\hat{\mathfrak{h}}}(1,0),\omega)$, the following assertions hold.

1) Im $\mathcal{A}_{\omega'}$ generates a Heisenberg vertex operator algebra

$$V_{\widehat{\operatorname{Im}}\mathcal{A}_{\omega'}}(1,0) = C_{V_{\widehat{\mathfrak{h}}}(1,0)}(\langle \omega - \omega' \rangle)$$

and Ker $\mathcal{A}_{\omega'}$ generates a Heisenberg vertex operator algebra

$$V_{\widehat{\operatorname{Ker}}\mathcal{A}_{\omega'}}(1,0) = C_{V_{\widehat{\mathfrak{h}}}(1,0)}(\langle \omega' \rangle);$$

2)
$$C_{V_{\widehat{\mathfrak{h}}}(1,0)}(V_{\operatorname{Ker}\mathcal{A}_{\omega'}}(1,0)) = V_{\operatorname{Im}\mathcal{A}_{\omega'}}(1,0)$$
$$C_{V_{\widehat{\mathfrak{h}}}(1,0)}(V_{\operatorname{Im}\mathcal{A}_{\omega'}}(1,0))) = V_{\operatorname{Ker}\mathcal{A}_{\omega'}}(1,0);$$

 $\begin{array}{ll} \textbf{3)} \ V_{\widehat{\mathfrak{h}}}(1,0) \ \cong \ C_{V_{\widehat{\mathfrak{h}}}(1,0)}(< \ \omega' \ >) \otimes \ C_{V_{\widehat{\mathfrak{h}}}(1,0)}(C_{V_{\widehat{\mathfrak{h}}}(1,0)}(< \\ \omega' >)). \end{array}$

7. Isomorphism Problem

Theorem 8. Let (V, ω) be a nondegenerate simple CFT type vertex operator algebra generated by V_1 . Assume that $L(1)V_1 = 0$. If for each $\omega' \in Sc(V, \omega)$, there are

$$V \cong C_V(C_V(\langle \omega' \rangle)) \otimes C_V(\langle \omega' \rangle)$$
(2)

then (V, ω) is isomorphic to the Heisenberg vertex operator algebra $(V_{\hat{\mathfrak{h}}}(1,0),\omega)$ with $\mathfrak{h} = V_1$.

Theorem 9. Let (V, ω) be a nondegenerate simple *CFT* type vertex operator algebra generated by V_1 . Assume dim $V_1 = d$ and $L(1)V_1 = 0$. If there exists a chain $0 = \omega^0 < \omega^1 < \cdots < \omega^{d-1} < \omega^d = \omega$ in $Sc(V, \omega)$ such that dim $C_V(C_V(<\omega^i - \omega^{i-1} >))_1 \neq 0$, for $i = 1, \cdots, d$, then V is isomorphic to the Heisenberg vertex operator algebra $(V_{\widehat{h}}(1,0), \omega)$ with $\mathfrak{h} = V_1$.

