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1. Motivations

• moduli problem in representation theory is to clas-

sify isomorphism classes of objects.

• The moduli problem always has the form of an

algebraic variety X together with an algebraic group

G acting on X. Hence the goal is to understand the

invariants of “X/G′′ in the many different ways.

• This work is to apply the geometric ideas to the-

ory of vertex operator algebras with influence of such

ideology.

2. Vertex operator algebras

Vertex algebra (VA): (V, Y V , 1V ).

• V— a C-vector space

• Y V : V → EndC(V )[[z−1, z]], (state-field corresp.)

v 7→ Y V (v, z) =
∑
n
vnz
−n−1, vn ∈ EndC(V )

such that Y V (V, z)V ⊆ V [z−1, z]]. Such Y (v, z) are

called fields and elements v in V are called states.



• (the locality property)

(z1−z2)k[Y (u, z1), Y (v, z2)] = 0 for some k = k(v, u) > 0

• Y V (1, z) = Id, and Y V (v, z)1 ∈ v + zV [[z]].

• there is a linear operator D : V → V such that

Y (D(v), z) =
d

dz
Y (v, z)

Remark: The locality together with the operator D

implies the Jacobi identity which can be written as

∞∑
i=0

(−1)i
(l
i

)
(um+l−ivn+i − (−1)lvn+l−ium+i)

=
∞∑
i=0

(m
i

)
(ul+i(v))m+n−i

for all l,m, n ∈ Z.

Equivalently, taking l = 0,

[um, vn] =
∞∑
i=0

(m
i

)
(ui(v))m+n−i

for all n,m ∈ Z.

Vertex operator algebra (VOA): (V, Y V , 1V , ωV ).

• (V, Y V , 1V ) is a vertex algebra and

• ω ∈ V such that for Y V (ω, z) =
∑
nL(n)z−n−2 such



that the span of {L(n) : n ∈ Z} is a Lie algebra satis-

fying the following relations:

[L(m), L(n)] = (m− n)L(m+ n) +
m3 −m

12
δm+n,0c

and is a Virasoro Lie algebra (a central extension of

the Witt Lie algebra of vector fields: 〈tn ddt〉), with

L(n) = −tn+1 d
dt on C[t, t−1]

• L(−1) = D.

On a VA, there could be many conformal structures!

Example of a vertex algebra Any commutative al-

gebra A is a vertex algebra with

Y (a, z) = a−1 : V → V is the multiplication of a on A

and D and 1 the identity of A. It is also a vertex op-

erator algebra with trivial Virasoro Lie algebra module

structure, i.e., ω = 0.

V -modules: (M,YM) (for VA).

YM(v, z) =
∑

vnz
−n−1, vn ∈ EndC(M)

which are fields on M and the locality property holds

and the associativity holds:

(z0 + z1)k(YM(Y (u, z0)v, z1)x

= (z0 + z1)kYM(u, z0 + z1)YM(v, z1))x



for all u, v ∈ V and x ∈M and some k = k(u, x) > 0.

If A is a commutative algebra and viewed as vertex

algebra, then vertex algebra modules are exactly the

modules of the commutative algebra.

Fact: the module category for a vertex algebra is an

abelian category.

If V is a vertex operator algebra, any vertex algebra

module (M,Y VM) automatically has a module structure

of the Virasoro Lie algebra defined by the operators

LVM(n) on M from

Y VM(ωV , z) =
∑
n
LVM(n)z−n−2.

There are more conditions on representations of VOA:

L(0) is semisimple with finite dimensional eigenspaces

and eigenvalues (weights) should be bounded below

(similar to category O but corresponding to lowest

weights).



3. Semi-conformal subalgebras

A VA-homomorphism

f : (W,YW , 1W )→ (V, Y V , 1V )

f(YW (w1, z)w2) = Y V (f(w1), z)f(w2), f(1W ) = 1V .

For a VA-homomorphism f : (W,YW , 1W , ωW ) →
(V, Y V , 1V , ωV ).

f is conformal if f(ωW ) = ωV , which is equivalent to

f ◦ LW (n) = LV (n) ◦ f for all n ∈ Z

i.e., a homomorphism of Virasoro modules.

f is semi-conformal if

f ◦ LW (n) = LV (n) ◦ f for all n ≥ −1.

If f : W ⊆ V , then YW = Y V |W and we call (W,YW , 1W , ωW )

a conformal (semi-conformal) subVOA of (V, Y V , 1V , ωV ).

Definition 1. For any VOA (V, Y, 1, ω) we define

• ScAlg(V, ωV ) = {(W,ωW ) ⊆ (V, ωV ) semi conf. subalg};
• Sc(V, ωV ) = {ω′ ∈ V | a semi-conformal vector}
Theorem 1. For any vertex operator algebra (V, Y, 1, ω),

the set Sc(V, ωV ) of semi-conformal vectors of (V, ωV )

is an affine algebraic variety.



In fact, the equations for the variety Sc(V, ωV ) are

L(0)ω′ = 2ω′;
L(1)ω′ = 0;
L(2)ω′ = 1

2c1;
L′(−1)ω′ = L(−1)ω′;
L(n)ω′ = 0, n ≥ 3.

(1)

Theorem 2. For any vertex operator algebra (V, Y, 1, ω)

and any vertex subalgebra W , there is at most one

conformal structure ωW ∈W on W such that (W,ωW )

is semi-conformal vertex operator subalgebra.

Theorem 3. If (W,YW , 1W , ωW ) ⊆ (V, Y V , 1V , ωV ) is

a semi-conformal subVOA, then Sc(W,ωW ) ⊆ Sc(V, ωV )

Affine vertex algebras

Example 1. • Let g be a Lie algebra, with a non-

degenerate invariant symmetric bilinear form 〈·, ·〉.
Invariant means 〈[x, y], z〉 = 〈x, [y, z]〉.

• The corresponding affine Lie algebra with C cen-

tral is

ĝ = g[t, t−1]⊕ CC



with Lie structure

[xtn, ytm] = [x, y]tn+m + nδn+m,0C.

ĝ+ = g[t]⊕ CC ⊆ ĝ is a Lie subalgebra.

Vĝ(l,0) = U(ĝ)⊗U(ĝ+) Cl (the Verma module)

has a vertex algebra structure.

• C = l ∈ C is called the level.

• v+ = 1 ⊗ 1 is the generator of the ĝ-module, i.e,

the highest weight vector.

• Lĝ(l,0) the irreducible quotient of Vĝ(l,0) as ĝ-

module.

• Both Vĝ(l,0) and Lĝ(l,0) have a vertex algebra

structure such that

Y (xt−1v+, z) =
∑
n∈Z

xtnz−n−1

with xtn acting on ĝ-modules. With a few exceptions

of l ∈ C.

• Both Vĝ(l,0) and Lĝ(l,0) have a conformal struc-

ture making them as vertex operator algebras.

• Certain irre. ĝ-modules Lĝ(l, λ) are irre. modules

for the both VOAs.

Here λ can be thought as irreducible g-modules.



Example 2. • h ⊆ g is a subalgebra such that the

restriction of the bilinear form 〈·, ·〉 is degenerate and

ĥ is a subalgebra of ĝ.

• L
ĥ
(l,0) = U(ĥ)v+ ⊆ Lĝ(l,0) is an irr. ĥ-module

and has VOA structure. It is not a subVOA, but a

semi-comformal subVOA of Lĝ(l,0).

• If h is a maximal torus, L
ĥ
(l,0) = V

ĥ
(l,0) is the

Heisenberg VOA.

4. Centralizers in VOA

For any vertex algebra (V, Y V , 1V ) and any subset S

of V , the centralizer

CV (S) = {v ∈ V | [Y V (v, z1), Y V (s, z2)] = 0, ∀, s ∈ S}.

Consequences:

• CV (S) is always a vertex subalgebra.

• CV (S) = CV (〈S〉) with 〈S〉 being the vertex sub-

algebra generated by S.

• CW (V ) = {w ∈W | wn(v) = 0 ∀n ≥ 0, ∀v ∈ V }
• CW (V ) = {w ∈W | vn(w) = 0 ∀n ≥ 0, ∀v ∈ V }
• CW (V ) is a sub VA of W .

• CV (V ) is called the center of the VA V (always a

commutative associative algebra).



• CV (W ) = homW -Mod(W,V ), space of all W -module

homorphisms of W ⊆ V is a vertex subalgebra.

If (W,YW , 1W , ωW ) ⊆ (V, Y V , 1V , ωV ) are VOAs, CV (W )

needs not be a VOA.

Theorem 4. If (W,YW , 1W , ωW ) ⊆ (V, Y V , 1V , ωV ) is

a semi-conformal subVOA, then CV (W ) also a semi-

conformal sub VOA with ωCV (W ) = ωV − ωW .

• CV (W ) = ker(LW (−1) : V → V )

where Y V (ωW , z) =
∑
LW (n)z−n−2

• CV (V ) = C1V if V is a simple VOA.

A vertex algebra is called central if CV (V ) = C1.

Theorem 5. If (W,YW , 1W , ωW ) ⊆ (V, Y V , 1V , ωV ) is

a semi-conformal subVOA, then the map

Sc(W,ωW )× Sc(CV (W ), ωCV (W ))→ Sc(V, ωV )

defined by (ω′, ω′′) 7→ ω′+ ω′′ is injective.

Poset structure on Sc(V, ω)



For each ω′ ∈ Sc(V, ω),

V (ω′) = CV (ω − ω′)

The map ScAlg(V, ω)→ Sc(V, ω)

ω′ 7→ V (ω′) is an injection. is a semi-conformal subal-

gebra of V .

Definition 2. We say ω′ ≤ ω′′ if V (ω′) ⊆ V (ω′′).

There is an order reversing map Sc(V, ω) → Sc(V, ω)

such that ω′ 7→ ω − ω′.
Example 3. For for simple g and h ⊆ g Cartan subal-

gebra L
ĥ
(l,0) ⊆ Lĝ(l,0). The semiconformal sub VOA

K(g, l) := CLĝ(l,0)(L
ĥ
(l,0)) is called a parafermion stud-

ied intensively by physists.

Conjecture 1. K(g, l) is always rational!

More general case is speculated. If W is rational and

V ⊆W is semi-conformal and rational, then CW (V ) is

also rational.

5. Tensor Products



For two VAs V ′ and V ′′, the tensor product VA struc-

ture on V ′ ⊗ V ′′ is defined by

Y V
′⊗V ′′(v′ ⊗ v′′, z) = Y V

′
(v′, z)⊗ Y V

′′
(v′′, z)

and 1V ′⊗V ′′ = 1V ′ ⊗ 1V ′′.

We set W = V ′ ⊗ V ′′ and V = V ′ ⊗ 1V ”. CW (V ) ⊇
1V
′ ⊗ V ′′. If both V ′ and V ′′ are VOAs with ωV

′
and

ωV
′′

, then V ′ ⊗ V ′′ is also a VOA with

ωV
′⊗V ′′ = ω′ ⊗ 1V

′′
+ 1V

′
⊗ ωV

′′
.

Thus V ′⊗1′′ is a semi-conformal subalgebra of V ′⊗V ′′

and CV ′⊗V ′′(V
′⊗1V

′′
) also a semi-conformal in V ′⊗V ′′

with conformal element 1V
′ ⊗ ωV ”.

Proposition 1. CV ′⊗V ′′(V
′ ⊗ 1V

′′
) = CV ′(V

′)⊗ V ′′. In

particular, If V ′ is a simple vertex operator algebra,

then CV ′⊗V ′′(V
′ ⊗ 1V

′′
) = 1V

′ ⊗ V ′′.
Proposition 2. If V ′ and V ′′ are two simple VOAs,

then V ′ ⊗ V ′′ is a simple VOA.

Example 4. For a finite dim. simple Lie algebra g,

Lĝ(l,0)⊗n is a simple VOA and Lĝ(nl,0) ⊆ Lĝ(l,0)⊗n

is a semiconformal sub VOA.

Example 5. If L is an even lattice and VL is a lattice



VOA, then V ⊗nL
∼= VL×n. And V√nL ⊆ VL×n is a semi-

conformal subVOA.

Question 1. Decompose Lĝ(l,0)⊗n as Lĝ(nl,0)-modules.

More generally, given a composition (l1, · · · ls), and

simple Lĝ(li,0)-modules Mi, then

M1⊗ · · · ⊗Ms is a module for Lĝ(l1,0)⊗ · · · ⊗Lĝ(ls,0).

Lĝ(l1 + · · ·+ ls,0) ⊆ Lĝ(l1,0) ⊗ · · · ⊗ Lĝ(ls,0) is semi-

conformal subVOA.

Question 2. Then decompose M1⊗· · ·⊗Ms as Lĝ(l1+

· · ·+ ls,0)-modules.

These are Schur-Weyl duality of questions.

6. Heisenberg vertex operator algebras

• Let h be a d-dim. vector space (abelian Lie alg.)

〈·, ·〉 a nondegenerate symmetric bilinear form on h

• ĥ = C[t, t−1] ⊗ h ⊕ CC is the affiniziation of the

abelian Lie algebra h with

[β1 ⊗ tm, β2 ⊗ tn] = m〈β1, β2〉δm,−nC.

• ĥ+ = C[t]⊗ h⊕ CC is an Abelian subalgebra.

• For ∀λ ∈ h, we can define an one-dimensional ĥ≥0-

module Ceλ by the actions (h ⊗ tm) · eλ = 〈λ, h〉δm,0eλ



and C · eλ = eλ for h ∈ h and m ≥ 0.

• Set

V
ĥ
(1, λ) = U(ĥ)⊗U(ĥ≥0) Ce

λ ∼= S(t−1C[t−1]⊗ h)

• Choose an orthonormal basis {h1, · · · , hd} of h

Define ω = 1
2
∑d
i=1 hi(−1)2 · 1 ∈ V

ĥ
(1,0).

Then (V
ĥ
(1,0), Y, 1, ω) has a vertex operator algebra

structure and

• (V
ĥ
(1, λ), Y ) becomes an irreducible module of (V

ĥ
(1,0), ω)

for any λ ∈ h.

• Each ω′ ∈ Sc(V, ω) correspond to a linear map Aω′ :

h→ h which is a projection to a regular subspace of h.

Theorem 6. 1) The map ρ : ω′ 7→ Im(Aω′) is an

ordering preserving Aut(V
ĥ
(1,0), ω)-equivariant bi-

jection form Sc(V
ĥ
(1,0), ω) to Reg(h);

2) Sc(V
ĥ
(1,0), ω) has exactly d + 1 orbits under the

group Aut(V
ĥ
(1,0), ω)-action and each 0 ≤ i ≤ d

corresponds to the orbit

Sc(V
ĥ
(1,0), ω)i = {h′ ⊂ h|h′ is i-dim. reg. subsp. of h}



3) There exists a longest chain in Sc(V
ĥ
(1,0), ω) such

that the length of this chain equals to d: there

exist ω1, · · · , ωd−1 ∈ Sc(V
ĥ
(1,0), ω) such that

0 = ω0 < ω1 < · · · < ωd−1 < ωd = ω.

Theorem 7. For each ω′ ∈ Sc(V
ĥ
(1,0), ω), the fol-

lowing assertions hold.

1) ImAω′ generates a Heisenberg vertex operator al-

gebra

V ̂ImAω′
(1,0) = CV

ĥ
(1,0)(< ω − ω′ >)

and KerAω′ generates a Heisenberg vertex opera-

tor algebra

V
K̂erAω′

(1,0) = CV
ĥ
(1,0)(< ω′ >);

2) CV
ĥ
(1,0)(V

K̂erAω′
(1,0)) = V ̂ImAω′

(1,0)

CV
ĥ
(1,0)(V ̂ImAω′

(1,0))) = V
K̂erAω′

(1,0);

3) V
ĥ
(1,0) ∼= CV

ĥ
(1,0)(< ω′ >) ⊗ CV

ĥ
(1,0)(CV

ĥ
(1,0)(<

ω′ >)).

7. Isomorphism Problem



Theorem 8. Let (V, ω) be a nondegenerate simple

CFT type vertex operator algebra generated by V1.

Assume that L(1)V1 = 0. If for each ω′ ∈ Sc(V, ω),

there are

V ∼= CV (CV (< ω′ >))⊗ CV (< ω′ >) (2)

then (V, ω) is isomorphic to the Heisenberg vertex op-

erator algebra (Vĥ(1,0), ω) with h = V1.

Theorem 9. Let (V, ω) be a nondegenerate simple

CFT type vertex operator algebra generated by V1.

Assume dimV1 = d and L(1)V1 = 0. If there exists a

chain 0 = ω0 < ω1 < · · · < ωd−1 < ωd = ω in Sc(V, ω)

such that dimCV (CV (< ωi − ωi−1 >))1 6= 0, for i =

1, · · · , d, then V is isomorphic to the Heisenberg vertex

operator algebra (V
ĥ
(1,0), ω) with h = V1.



THANK YOU!


