A Conjecture of Victor Kac

Conference on Geometric Methods in Invariant Theory

Daniel Kline (joint work with Calin Chindris)
November 28, 2016
University of Missouri - Columbia

Kac's Conjecture

Action of $\mathrm{GL}(\beta)$ on $\operatorname{rep}(Q, \beta)$

Definition

$$
\begin{aligned}
& \text { 1. } \operatorname{rep}(Q, \beta)=\prod_{a \text { arrow of } Q} \operatorname{Mat}_{\beta(h a) \times \beta(t a)}(K) \\
& \text { 2. } \operatorname{GL}(\beta)=\prod_{i \text { vertex of } Q} \mathrm{GL}(\beta(i))
\end{aligned}
$$

There is a natural action of $\mathrm{GL}(\beta)$ on $\operatorname{rep}(Q, \beta)$ by simultaneous conjugation:

$$
(g \cdot V)(a)=g(h a) \cdot V(a) \cdot g(t a)^{-1}
$$

Algebra of Semi-invariants

$\operatorname{SL}(\beta):=\prod_{i \text { vertex of } Q} S L(\beta(i))$.
The algebra of semi-invariants is:

$$
\operatorname{SI}(Q, \beta)=K[\operatorname{rep}(Q, \beta)]^{\operatorname{SL}(\beta)}
$$

Locally Semi-Simple Representations

- Hilbert's 14th problem $\Longrightarrow \mathrm{SI}(Q, \beta)$ is finitely generated.
- $\operatorname{SI}(Q, \beta)$ defines the affine quotient variety $\operatorname{rep}(Q, \beta) / / \operatorname{SL}(\beta)$.
- $V \in \operatorname{rep}(Q, \beta)$ is called locally semi-simple if:

$$
\mathrm{SL}(\beta) V=\overline{\mathrm{SL}(\beta) V}
$$

Kac's Conjecture

Victor Kac
"It seems that in the case of finite and tame oriented graphs...a representation is [locally] semisimple if and only if its endomorphism ring is semisimple." (page 161, Infinite Root Systems, Representations of Graphs and Invariant Theory II, Journal of Algebra, 78, 1982)

Stability

Fact

There is an epimorphism of abelian groups: $\left(\mathbb{Z}^{Q_{0}},+\right) \rightarrow X^{*}(G L(\beta))$, where $\theta \mapsto \chi_{\theta}$, defined by:

$$
\chi_{\theta}\left((g(i))_{i \in Q_{0}}\right):=\prod_{i \in Q_{0}} \operatorname{det}(g(i))^{\theta(i)}
$$

Fact
$\operatorname{SI}(Q, \beta) \cong \bigoplus_{\theta \in \mathbb{Z}^{Q_{0}}} \operatorname{SI}(Q, \beta)_{\theta}$ where
$\operatorname{SI}(Q, \beta)_{\theta}=\{f \in K[\operatorname{rep}(Q, \beta)] \mid g \cdot f=\theta(g) f, \forall g \in G L(\beta)\}$.

Stability

Definition

Let $V \in \operatorname{rep}(Q, \beta), \theta \in \mathbb{Z}^{Q_{0}}$, and $G L(\beta)_{\theta}:=\operatorname{ker}\left(\chi_{\theta}\right)$.
a) We say that V is θ-semi-stable if there exist $n \in \mathbb{Z}_{\geq 1}$ and $f \in \operatorname{SI}(Q, \beta)_{n \theta}$ such that $f(V) \neq 0$.
b) We say that V is θ-stable if V is θ-semi-stable, and $\mathrm{GL}(\beta)_{\theta} \cdot V$ is a closed orbit of dimension $\operatorname{dim} G L(\beta)-2$.

Theorem (King, 1993)

Let $V \in \operatorname{rep}(Q, \beta)$ and $\theta \in \mathbb{Z}^{Q_{0}}$.

1. V is θ-semi-stable if $\theta(\underline{\operatorname{dim}} V)=0$ and $\theta\left(\underline{\operatorname{dim}} V^{\prime}\right) \leq 0$ for all $V^{\prime} \leq V$.
2. V is θ-stable if $\theta(\underline{\operatorname{dim}} V)=0$ and $\theta\left(\underline{\operatorname{dim}} V^{\prime}\right)<0$ for all proper $V^{\prime} \leq V$

Locally Semi-Simple Representations and Stability

Theorem

Let $V \in \operatorname{rep}(Q, \beta)$ with

$$
V \simeq \bigoplus_{i=1}^{r} V_{i}^{m_{i}}
$$

a decomposition of V into pairwise non-isomorphic indecomposable representations V_{1}, \ldots, V_{r}, with multiplicities $m_{1}, \ldots, m_{r} \geq 1$. Then the following are equivalent:
a) V is locally semi-simple;
b) there exists a common weight θ of Q such that each V_{i} is θ-stable.

Semi-Simple Endomorphism Rings

Definition

A sequence of representations V_{1}, \ldots, V_{r} is called an orthogonal Schur sequence if all the representations V_{i} are Schur and $\operatorname{Hom}\left(V_{i}, V_{j}\right)=0$ for $i \neq j$.

Theorem

Let A be a K-algebra and V an A-module. Let

$$
V \cong \bigoplus_{i=1}^{r} V_{i}^{m_{i}}
$$

be a decomposition of V into pairwise non-isomorphic indecomposable A modules V_{1}, \ldots, V_{r} with multiplicities $m_{1}, \ldots, m_{r} \geq 1$. Then $\operatorname{End}_{A}(V)$ is a semi-simple K-algebra if and only if V_{1}, \ldots, V_{r} form an orthogonal Schur sequence.

One Direction of Kac's Conjecture

Corollary

Let Q be any acyclic quiver and $V \in \operatorname{rep}(Q, \beta)$. If V is locally semi-simple, then $\operatorname{End}_{Q}(V)$ is semi-simple.

Key question: Given an orthogonal Schur sequence, does there exists a common weight θ such that each representation is θ-stable?

Orthogonal Schur Sequences and Stability Weights

Non-regular Case

Definition

A sequence V_{1}, \ldots, V_{r} is called an exeptional sequence if each V_{i} is exceptional and $\operatorname{Hom}_{Q}\left(V_{i}, V_{j}\right)=\operatorname{Ext}_{Q}^{1}\left(V_{i}, V_{j}\right)=0$ for $i<j$.

Proposition (Derksen-Weymen)

Let Q be a quiver and $\mathcal{L}=\left(V_{1}, \ldots, V_{r}\right)$ an orthogonal exceptional sequence of representations of Q. Then there exists a weight θ such that V_{i} is θ-stable for all $1 \leq i \leq r$.

Proposition

a) When Q is Dynkin, any orthogonal Schur sequence has a common stability weight.
b) When Q is Euclidean, any orthogonal Schur sequence containing at least one non-regular representation has a common stability weight.

The Regular Category

$$
\mathcal{R}(Q)=\operatorname{rep}(Q)_{\langle\delta,\rangle}^{s s}
$$

Lemma

Let X be a regular simple representation. Then:
i) X is Schur;
ii) $\tau^{i}(X)$ is regular simple for all i;
iii) X is τ-periodic;
iv) $\tau(X) \cong X$ if and only if $\underline{\operatorname{dim}} X=r \delta$, for some $r \in \mathbb{Z}_{\geq 0}$;
v) if X has period p, then $\underline{\operatorname{dim}} X+\underline{\operatorname{dim}} \tau(X)+\ldots+\underline{\operatorname{dim}} \tau^{p-1}(X)=\delta$.

Indecomposable Regular Representations

Definition

A regular representation X is called regular uniserial if all of the regular subrepresentations of X lie in a chain:

$$
0=X_{0} \subsetneq X_{1} \subsetneq \ldots \subsetneq X_{r-1} \subsetneq X_{r}=X
$$

In this case, X has regular simple composition factors $X_{1}, X_{2} / X_{1}, \ldots, X_{r} / X_{r-1}$, regular length $r \ell(X):=r$, regular socle $r \operatorname{Soc}(X):=X_{1}$ and regular top $r \operatorname{Top}(X):=X / X_{r-1}$.

Theorem

Every indecomposable regular representation X is regular uniserial. Moreover, if E is the regular top of X, then the compositions factors of X are precisely $E, \tau(E), \ldots, \tau^{\ell}(E)$ where $\ell+1=r \ell(X)$.

Tube of period 3

Regular Case

Proposition

Let Q be a Euclidean quiver. Then given any orthogonal Schur sequence of regular representations V_{1}, \ldots, V_{r} there exists a weight θ such that each V_{i} is θ-stable.

Example

Let Q be the $\widetilde{\mathbb{D}}_{5}$ quiver:

The three non-homogeneous regular tubes of Q are generated by the following regular simples:

Consider the orthogonal Schur sequence

$$
\mathcal{L}=\mathcal{L}_{0} \cup \mathcal{L}_{1} \cup \mathcal{L}_{2} \cup \mathcal{L}_{3},
$$

where:

$$
\text { and } \mathcal{L}_{3}=\left\{V_{5}=Y_{1}, V_{6}=Y_{2}\right\}
$$

$$
\left[\begin{array}{c}
\underline{\operatorname{dim}} E_{1} \\
\operatorname{dim} E_{2} \\
\operatorname{dim} E_{3} \\
\underline{\operatorname{dim}} L_{1} \\
\operatorname{dim} Y_{1}
\end{array}\right] \cdot \theta=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
\theta_{1} \\
\theta_{2} \\
\theta_{3} \\
\theta_{4} \\
\theta_{5} \\
\theta_{6}
\end{array}\right]=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
1 \\
0
\end{array}\right]
$$

The general solution of this system is $(t, 2-t, 1-t, t-1,0,-1)$ for $t \in \mathbb{R}$. When $t=1$, we get $\theta=(1,1,0,0,0,-1)$

Now set:

$$
\sigma=\theta+2\langle\delta, \cdot\rangle=(3,-1,-2,2,0,-1)
$$

Then each V_{i} is σ-stable and $V=\bigoplus_{i=1}^{6} V_{i}$ is locally semi-simple.

Example

$$
V(a)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], V(b)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right], V(c)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] .
$$

Theorem (Main Result)

Let Q be an acyclic quiver. Then the following statements are equivalent:
(i) Q is tame;
(ii) a Q-representation V is locally semi-simple if and only if $\operatorname{End}_{Q}(V)$ is semi-simple.

Thank you!

