A Conjecture of Victor Kac

Conference on Geometric Methods in Invariant Theory

Daniel Kline (joint work with Calin Chindris) November 28, 2016

University of Missouri - Columbia

Kac's Conjecture

Definition

1. $\operatorname{rep}(Q,\beta) = \prod_{a \text{ arrow of } Q} \operatorname{Mat}_{\beta(ha) \times \beta(ta)}(K)$

2.
$$GL(\beta) = \prod_{i \text{ vertex of } Q} GL(\beta(i))$$

There is a natural action of $GL(\beta)$ on $rep(Q, \beta)$ by simultaneous conjugation:

$$(g \cdot V)(a) = g(ha) \cdot V(a) \cdot g(ta)^{-1}$$

$$\mathsf{SL}(\beta) := \prod_{i \text{ vertex of } Q} SL(\beta(i)).$$

The algebra of semi-invariants is:

$$SI(Q,\beta) = K[rep(Q,\beta)]^{SL(\beta)}$$

- Hilbert's 14th problem \implies SI (Q, β) is finitely generated.
- $SI(Q,\beta)$ defines the affine quotient variety $rep(Q,\beta)//SL(\beta)$.
- $V \in \operatorname{rep}(Q, \beta)$ is called *locally semi-simple* if:

$$SL(\beta)V = \overline{SL(\beta)V}.$$

Kac's Conjecture

Victor Kac

"It seems that in the case of finite and tame oriented graphs...a representation is [locally] semisimple if and only if its endomorphism ring is semisimple." (page 161, *Infinite Root Systems, Representations of Graphs and Invariant Theory II*, Journal of Algebra, 78, 1982)

Stability

Fact

There is an epimorphism of abelian groups: $(\mathbb{Z}^{Q_0}, +) \twoheadrightarrow X^*(GL(\beta))$, where $\theta \mapsto \chi_{\theta}$, defined by:

$$\chi_{ heta}\left((g(i))_{i\in Q_0}
ight):=\prod_{i\in Q_0}\det(g(i))^{ heta(i)}$$

Fact

 $\mathsf{SI}(Q,\beta) \cong \bigoplus_{\theta \in \mathbb{Z}^{Q_0}} \mathsf{SI}(Q,\beta)_{\theta}$ where

 $\mathsf{SI}(Q,\beta)_{\theta} = \{ f \in K[\mathsf{rep}(Q,\beta)] | g \cdot f = \theta(g)f, \forall g \in \mathsf{GL}(\beta) \}.$

Stability

Definition

Let $V \in rep(Q, \beta)$, $\theta \in \mathbb{Z}^{Q_0}$, and $GL(\beta)_{\theta}$: = ker (χ_{θ}) .

- a) We say that V is θ -semi-stable if there exist $n \in \mathbb{Z}_{\geq 1}$ and $f \in Sl(Q, \beta)_{n\theta}$ such that $f(V) \neq 0$.
- b) We say that V is θ -stable if V is θ -semi-stable, and $GL(\beta)_{\theta} \cdot V$ is a closed orbit of dimension dim $GL(\beta) 2$.

Theorem (King, 1993)

Let $V \in \operatorname{rep}(Q, \beta)$ and $\theta \in \mathbb{Z}^{Q_0}$.

1. V is θ -semi-stable if $\theta(\underline{\dim} V) = 0$ and $\theta(\underline{\dim} V') \leq 0$ for all $V' \leq V$.

2. *V* is θ -stable if $\theta(\dim V) = 0$ and $\theta(\dim V') < 0$ for all proper $V' \le V$

Theorem

Let $V \in \operatorname{rep}(Q,\beta)$ with

$$V\simeq igoplus_{i=1}^r V_i^{m_i}$$

a decomposition of V into pairwise non-isomorphic indecomposable representations V_1, \ldots, V_r , with multiplicities $m_1, \ldots, m_r \ge 1$. Then the following are equivalent:

- a) V is locally semi-simple;
- b) there exists a common weight θ of Q such that each V_i is θ -stable.

Definition

A sequence of representations V_1, \ldots, V_r is called an orthogonal Schur sequence if all the representations V_i are Schur and Hom $(V_i, V_j) = 0$ for $i \neq j$.

Theorem

Let A be a K-algebra and V an A-module. Let

$$V\cong igoplus_{i=1}^r V_i^{m_i}$$

be a decomposition of V into pairwise non-isomorphic indecomposable Amodules V_1, \ldots, V_r with multiplicities $m_1, \ldots, m_r \ge 1$. Then $End_A(V)$ is a semi-simple K-algebra if and only if V_1, \ldots, V_r form an orthogonal Schur sequence.

Corollary

Let Q be any acyclic quiver and $V \in \operatorname{rep}(Q, \beta)$. If V is locally semi-simple, then $\operatorname{End}_Q(V)$ is semi-simple.

Key question: Given an orthogonal Schur sequence, does there exists a common weight θ such that each representation is θ -stable?

Orthogonal Schur Sequences and Stability Weights

Definition

A sequence V_1, \ldots, V_r is called an exeptional sequence if each V_i is exceptional and $\text{Hom}_Q(V_i, V_j) = \text{Ext}_Q^1(V_i, V_j) = 0$ for i < j.

Proposition (Derksen-Weymen)

Let Q be a quiver and $\mathcal{L} = (V_1, \ldots, V_r)$ an orthogonal exceptional sequence of representations of Q. Then there exists a weight θ such that V_i is θ -stable for all $1 \le i \le r$.

Proposition

- a) When Q is Dynkin, any orthogonal Schur sequence has a common stability weight.
- b) When Q is Euclidean, any orthogonal Schur sequence containing at least one non-regular representation has a common stability weight.

The Regular Category

$$\mathcal{R}(Q) = \operatorname{\mathsf{rep}}\left(Q
ight)^{ss}_{\langle \delta, \cdot
angle}$$

Lemma

Let X be a regular simple representation. Then:

- i) X is Schur;
- ii) $\tau^{i}(X)$ is regular simple for all *i*;
- iii) X is τ -periodic;
- iv) $\tau(X) \cong X$ if and only if $\underline{\dim} X = r\delta$, for some $r \in \mathbb{Z}_{\geq 0}$;
- v) if X has period p, then $\underline{\dim} X + \underline{\dim} \tau(X) + \ldots + \underline{\dim} \tau^{p-1}(X) = \delta$.

Definition

A regular representation X is called *regular uniserial* if all of the regular subrepresentations of X lie in a chain:

$$0 = X_0 \subsetneq X_1 \subsetneq \ldots \subsetneq X_{r-1} \subsetneq X_r = X$$

In this case, X has regular simple composition factors $X_1, X_2/X_1, \ldots, X_r/X_{r-1}$, regular length $r\ell(X) := r$, regular socle $rSoc(X) := X_1$ and regular top $rTop(X) := X/X_{r-1}$.

Theorem

Every indecomposable regular representation X is regular uniserial. Moreover, if E is the regular top of X, then the compositions factors of X are precisely $E, \tau(E), \ldots, \tau^{\ell}(E)$ where $\ell + 1 = r\ell(X)$.

Tube of period 3

Proposition

Let Q be a Euclidean quiver. Then given any orthogonal Schur sequence of regular representations V_1, \ldots, V_r there exists a weight θ such that each V_i is θ -stable.

Example

Let Q be the $\widetilde{\mathbb{D}}_5$ quiver:

The three non-homogeneous regular tubes of Q are generated by the following regular simples:

Consider the orthogonal Schur sequence

 $\mathcal{L} = \mathcal{L}_0 \cup \mathcal{L}_1 \cup \mathcal{L}_2 \cup \mathcal{L}_3,$

where:

$$\mathcal{L}_{0} = \left\{ V_{1} = \begin{array}{c} K \begin{bmatrix} 1 \\ 0 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} & K \\ K^{2} \xrightarrow{id} & K^{2} \\ K \begin{bmatrix} 0 \\ 1 \end{bmatrix} & \begin{bmatrix} 1 & 2 \end{bmatrix} & K \end{array} \right\}, \ \mathcal{L}_{1} = \left\{ V_{2} = \begin{array}{c} K \begin{bmatrix} 1 \\ 0 \end{bmatrix} & \begin{bmatrix} 1 & 0 \end{bmatrix} & K \\ K^{2} \xrightarrow{id} & K^{2} \\ K \begin{bmatrix} 0 \\ 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} & K \\ L_{2} = \left\{ V_{3} = \begin{array}{c} K \begin{bmatrix} 1 \\ 0 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} & K \\ K^{2} \xrightarrow{id} & K^{2} \\ K \begin{bmatrix} 0 \\ 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} & K \\ K^{2} \xrightarrow{id} & K^{2} \\ K \begin{bmatrix} 0 \\ 1 \end{bmatrix} & \begin{bmatrix} 1 & 1 \end{bmatrix} & K \\ K = \left(\begin{array}{c} E_{1} \\ E_{2} \\ E_{3} \end{array} \right), \ V_{4} = E_{2} \\ K \end{bmatrix},$$

and $\mathcal{L}_3 = \{V_5 = Y_1, V_6 = Y_2\}.$

$$\begin{bmatrix} \underline{\dim} E_1 \\ \underline{\dim} E_2 \\ \underline{\dim} E_3 \\ \underline{\dim} L_1 \\ \underline{\dim} Y_1 \end{bmatrix} \cdot \theta = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \\ \theta_6 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix}$$

The general solution of this system is (t, 2 - t, 1 - t, t - 1, 0, -1) for $t \in \mathbb{R}$. When t = 1, we get $\theta = (1, 1, 0, 0, 0, -1)$

Now set:

$$\sigma = \theta + 2\langle \delta, \cdot \rangle = (3, -1, -2, 2, 0, -1).$$

Then each V_i is σ -stable and $V = \bigoplus_{i=1}^6 V_i$ is locally semi-simple

Example

 $V(a) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, V(b) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, V(c) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$

Theorem (Main Result)

Let Q be an acyclic quiver. Then the following statements are equivalent:

- (i) Q is tame;
- (ii) a Q-representation V is locally semi-simple if and only if $\operatorname{End}_Q(V)$ is semi-simple.

Thank you!