GIT-Equivalence and Semi-Stable Subcategories of Quiver Representations

Valerie Granger Joint work with Calin Chindris

November 21, 2016

•
$$Q = (Q_0, Q_1, t, h)$$
 is a quiver

- $Q = (Q_0, Q_1, t, h)$ is a quiver
- K = algebraically closed field of characteristic 0

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

- $Q = (Q_0, Q_1, t, h)$ is a quiver
- K = algebraically closed field of characteristic 0

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

• V = a representation of the quiver Q

- $Q = (Q_0, Q_1, t, h)$ is a quiver
- K = algebraically closed field of characteristic 0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- V = a representation of the quiver Q
 - V(i) is the K-vector space at vertex i

- $Q = (Q_0, Q_1, t, h)$ is a quiver
- K = algebraically closed field of characteristic 0
- V = a representation of the quiver Q
 - V(i) is the K-vector space at vertex i
 - V(a) is the K-linear map along arrow a.

- $Q = (Q_0, Q_1, t, h)$ is a quiver
- K = algebraically closed field of characteristic 0
- V = a representation of the quiver Q
 - V(i) is the K-vector space at vertex i
 - V(a) is the K-linear map along arrow a.

• $\underline{\dim}V =$ the dimension vector of V.

- $Q = (Q_0, Q_1, t, h)$ is a quiver
- K = algebraically closed field of characteristic 0
- + V = a representation of the quiver Q
 - V(i) is the K-vector space at vertex i
 - V(a) is the K-linear map along arrow a.
 - $\underline{\dim}V =$ the dimension vector of V.
- rep(Q) is the category of finite dimensional quiver representations.

Euler Inner Product and Semi-stability

Given a quiver Q with vertex set Q_o and arrow set Q_1 , we define the **Euler inner product** of two vectors α and β in \mathbb{Z}^{Q_0} to be

Euler Inner Product and Semi-stability

Given a quiver Q with vertex set Q_o and arrow set Q_1 , we define the **Euler inner product** of two vectors α and β in \mathbb{Z}^{Q_0} to be

$$\langle \alpha, \beta \rangle = \sum_{i \in Q_o} \alpha(i)\beta(i) - \sum_{a \in Q_1} \alpha(ta)\beta(ha)$$

Given a quiver Q with vertex set Q_o and arrow set Q_1 , we define the **Euler inner product** of two vectors α and β in \mathbb{Z}^{Q_0} to be

$$\langle \alpha, \beta \rangle = \sum_{i \in Q_o} \alpha(i)\beta(i) - \sum_{a \in Q_1} \alpha(ta)\beta(ha)$$

From now on, assume that Q is a connected acyclic quiver.

Given a quiver Q with vertex set Q_o and arrow set Q_1 , we define the **Euler inner product** of two vectors α and β in \mathbb{Z}^{Q_0} to be

$$\langle \alpha, \beta \rangle = \sum_{i \in Q_o} \alpha(i)\beta(i) - \sum_{a \in Q_1} \alpha(ta)\beta(ha)$$

From now on, assume that Q is a connected acyclic quiver.

Let $\alpha \in \mathbb{Q}^{Q_0}$. A representation $V \in \operatorname{rep}(Q)$ is said to be $\langle \alpha, - \rangle$ -semi-stable if:

$$\langle \alpha, \underline{\dim} V \rangle = 0$$
 and $\langle \alpha, \underline{\dim} V' \rangle \leq 0$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

for all subrepresentations $V' \leq V$.

Given a quiver Q with vertex set Q_o and arrow set Q_1 , we define the **Euler inner product** of two vectors α and β in \mathbb{Z}^{Q_0} to be

$$\langle \alpha, \beta \rangle = \sum_{i \in Q_o} \alpha(i)\beta(i) - \sum_{a \in Q_1} \alpha(ta)\beta(ha)$$

From now on, assume that Q is a connected acyclic quiver.

Let $\alpha \in \mathbb{Q}^{Q_0}$. A representation $V \in \operatorname{rep}(Q)$ is said to be $\langle \alpha, - \rangle$ -semi-stable if:

$$\langle \alpha, \underline{\dim} V \rangle = 0$$
 and $\langle \alpha, \underline{\dim} V' \rangle \leq 0$

for all subrepresentations $V' \leq V$.

Likewise, it is $\langle \alpha, - \rangle$ -stable if the inequality is strict for proper, non-trivial subrepresentations.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Recall that a representation V is called **Schur** if $Hom_Q(V, V) = K$.

Recall that a representation V is called **Schur** if $Hom_Q(V, V) = K$.

We say a dimension vector β is a Schur root if there exists a β -dimensional Schur representation.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Recall that a representation V is called **Schur** if $Hom_Q(V, V) = K$.

We say a dimension vector β is a Schur root if there exists a β -dimensional Schur representation.

We say that $\beta' \hookrightarrow \beta$ if every β -dimensional representation has a subrepresentation of dimension β' .

- ロ ト - 4 回 ト - 4 □

 $\operatorname{rep}(Q)_{\langle \alpha, -\rangle}^{ss}$ is the full subcategory of $\operatorname{rep}(Q)$ whose objects are $\langle \alpha, -\rangle$ -semi-stable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

 $\operatorname{rep}(Q)^{ss}_{\langle \alpha, - \rangle}$ is the full subcategory of $\operatorname{rep}(Q)$ whose objects are $\langle \alpha, - \rangle$ -semi-stable.

We say that β is $\langle \alpha, - \rangle$ -(semi)-stable if there exists a β -dimensional, $\langle \alpha, - \rangle$ -(semi)-stable representation. This is equivalent to saying

 $\operatorname{rep}(Q)_{\langle \alpha, - \rangle}^{ss}$ is the full subcategory of $\operatorname{rep}(Q)$ whose objects are $\langle \alpha, - \rangle$ -semi-stable.

We say that β is $\langle \alpha, - \rangle$ -(semi)-stable if there exists a β -dimensional, $\langle \alpha, - \rangle$ -(semi)-stable representation. This is equivalent to saying

$$\langle \alpha, \beta \rangle = 0$$
 and $\langle \alpha, \beta' \rangle \le 0$ for all $\beta' \hookrightarrow \beta$

 $\operatorname{rep}(Q)^{ss}_{\langle \alpha, - \rangle}$ is the full subcategory of $\operatorname{rep}(Q)$ whose objects are $\langle \alpha, - \rangle$ -semi-stable.

We say that β is $\langle \alpha, - \rangle$ -(semi)-stable if there exists a β -dimensional, $\langle \alpha, - \rangle$ -(semi)-stable representation. This is equivalent to saying

$$\langle \alpha, \beta \rangle = 0$$
 and $\langle \alpha, \beta' \rangle \le 0$ for all $\beta' \hookrightarrow \beta$

And respectively, β is $\langle \alpha, - \rangle$ -stable if the second inequality is strict for $\beta' \neq 0, \beta$.

The cone of effective weights for a dimension vector β :

$$\mathcal{D}(\beta) = \{ \alpha \in \mathbb{Q}^{Q_o} | \langle \alpha, \beta \rangle = 0, \langle \alpha, \beta' \rangle \le 0, \beta' \hookrightarrow \beta \}$$

(ロ)、(型)、(E)、(E)、(E)、(Q)、(Q)

The cone of effective weights for a dimension vector β :

$$\mathcal{D}(\beta) = \{ \alpha \in \mathbb{Q}^{Q_o} | \langle \alpha, \beta \rangle = 0, \langle \alpha, \beta' \rangle \leq 0, \beta' \hookrightarrow \beta \}$$

Theorem (Schofield)

 β is a Schur root if and only if $\mathcal{D}(\beta)^{\circ} = \{ \alpha \in \mathbb{Q}^{Q_0} | \langle \alpha, \beta \rangle = 0, \langle \alpha, \beta' \rangle < 0 \forall \beta' \rightarrow \beta, \beta \neq 0, \beta \}$ is non-empty if and only if β is $\langle \beta, - \rangle - \langle -, \beta \rangle$ -stable.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Two rational vectors $\alpha_1, \alpha_2 \in \mathbb{Q}^{Q_0}$, are said to be **GIT-equivalent** (or **ss-equivalent**) if:

$$\operatorname{rep}(Q)^{ss}_{\langle lpha_1, -
angle} = \operatorname{rep}(Q)^{ss}_{\langle lpha_2, -
angle}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

Two rational vectors $\alpha_1, \alpha_2 \in \mathbb{Q}^{Q_0}$, are said to be **GIT-equivalent** (or **ss-equivalent**) if:

$$\operatorname{rep}(Q)^{ss}_{\langle lpha_1, -
angle} = \operatorname{rep}(Q)^{ss}_{\langle lpha_2, -
angle}$$

Main Question: Find necessary and sufficient conditions for α_1 and α_2 to be GIT-equivalent.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two rational vectors $\alpha_1, \alpha_2 \in \mathbb{Q}^{Q_0}$, are said to be **GIT-equivalent** (or **ss-equivalent**) if:

$$\operatorname{rep}(Q)^{ss}_{\langle lpha_1, -
angle} = \operatorname{rep}(Q)^{ss}_{\langle lpha_2, -
angle}$$

Main Question: Find necessary and sufficient conditions for α_1 and α_2 to be GIT-equivalent.

Colin Ingalls, Charles Paquette, and Hugh Thomas gave a characterization in the case that Q is tame, which was published in 2015. Their work was motivated by studying what subcategories of rep(Q) arise as semi-stable-subcategories, with an eye towards forming a lattice of subcategories.

A tiny bit of AR Theory for tame path algebras

We can build the Auslander-Reiten quiver, $\Gamma,$ of the path algebra ${\it KQ}.$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

• Each indecomposable KQ-module corresponds to a vertex in Γ

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Each indecomposable KQ-module corresponds to a vertex in Γ
- All projective indecomposables lie in the same connected component, and *all* indecomposables in that component (called preprojectives) are exceptional (i.e., their dimension vectors are real Schur roots)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Each indecomposable KQ-module corresponds to a vertex in Γ
- All projective indecomposables lie in the same connected component, and *all* indecomposables in that component (called preprojectives) are exceptional (i.e., their dimension vectors are real Schur roots)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Similarly for injectives/preinjectives

- Each indecomposable KQ-module corresponds to a vertex in Γ
- All projective indecomposables lie in the same connected component, and *all* indecomposables in that component (called preprojectives) are exceptional (i.e., their dimension vectors are real Schur roots)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Similarly for injectives/preinjectives
- Remaining indecomposables occur in tubes

- Each indecomposable KQ-module corresponds to a vertex in Γ
- All projective indecomposables lie in the same connected component, and *all* indecomposables in that component (called preprojectives) are exceptional (i.e., their dimension vectors are real Schur roots)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Similarly for injectives/preinjectives
- Remaining indecomposables occur in tubes
 - Homogeneous tubes (infinitely many)

- Each indecomposable KQ-module corresponds to a vertex in Γ
- All projective indecomposables lie in the same connected component, and *all* indecomposables in that component (called preprojectives) are exceptional (i.e., their dimension vectors are real Schur roots)

- Similarly for injectives/preinjectives
- Remaining indecomposables occur in tubes
 - Homogeneous tubes (infinitely many)
 - Finitely many non-homogeneous tubes

Non-Homogeneous tubes

Now for example, a rank 3 tube looks like:

↑ Not Schur

 δ -dimensional, Schur

↓ Schur

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

IPT did the following:

• Label the non-homogeneous regular tubes in the A-R quiver $1, \ldots, N$, and let the period of the i^{th} tube be r_i .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

IPT did the following:

- Label the non-homogeneous regular tubes in the A-R quiver $1, \ldots, N$, and let the period of the i^{th} tube be r_i .
- Let $\beta_{i,j}$ be the j^{th} quasi-simple root from the i^{th} tube, where $1 \le j \le r_i$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

IPT did the following:

- Label the non-homogeneous regular tubes in the A-R quiver $1, \ldots, N$, and let the period of the i^{th} tube be r_i .
- Let $\beta_{i,j}$ be the j^{th} quasi-simple root from the i^{th} tube, where $1 \le j \le r_i$.
- Set *I* to be the multi-index (*a*₁,..., *a*_N), where 1 ≤ *a_i* ≤ *r_i*, and *R* to be the set of all permissible such multi-indices.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

IPT did the following:

- Label the non-homogeneous regular tubes in the A-R quiver $1, \ldots, N$, and let the period of the i^{th} tube be r_i .
- Let $\beta_{i,j}$ be the j^{th} quasi-simple root from the i^{th} tube, where $1 \le j \le r_i$.
- Set *I* to be the multi-index (*a*₁,..., *a*_N), where 1 ≤ *a_i* ≤ *r_i*, and *R* to be the set of all permissible such multi-indices.
- Define the cone C_I to be the rational convex polyhedral cone generated by δ, together with β_{i,j}, except for β_{ia_i}.

Define $\mathcal{J} = \{C_I\}_{I \in \mathbb{R}} \cup \{\mathcal{D}(\beta)\}_{\beta}$, where β is a real Schur root. Set $\mathcal{J}_{\alpha} = \{\mathcal{C} \in \mathcal{J} | \alpha \in \mathcal{C}\}.$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Define $\mathcal{J} = \{C_I\}_{I \in \mathbb{R}} \cup \{\mathcal{D}(\beta)\}_{\beta}$, where β is a real Schur root. Set $\mathcal{J}_{\alpha} = \{\mathcal{C} \in \mathcal{J} | \alpha \in \mathcal{C}\}.$

Theorem (Ingalls, Paquette, Thomas)

For $\alpha_1, \alpha_2 \in \mathbb{Z}^{Q_0}$, we have that α_1 and α_2 are GIT equivalent if and only if $\mathcal{J}_{\alpha_1} = \mathcal{J}_{\alpha_2}$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

The semi-stable locus of α with respect to β is:

 $\operatorname{rep}(Q,\beta)^{ss}_{\langle lpha,angle}$

(ロ)、(型)、(E)、(E)、(E)、(Q)、(Q)

The semi-stable locus of α with respect to β is:

 $\operatorname{rep}(Q,\beta)^{ss}_{\langle lpha,angle}$

The GIT-cone of α with respect to β :

$$\mathcal{C}(\beta)_{\alpha} = \{ \alpha' \in \mathcal{D}(\beta) | \operatorname{rep}(Q, \beta)_{(\alpha, -)}^{ss} \subseteq \operatorname{rep}(Q, \beta)_{(\alpha', -)}^{ss} \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The semi-stable locus of α with respect to β is:

 $\operatorname{rep}(Q,\beta)^{ss}_{\langle lpha,angle}$

The GIT-cone of α with respect to β :

$$\mathcal{C}(\beta)_{\alpha} = \{ \alpha' \in \mathcal{D}(\beta) | \operatorname{rep}(Q, \beta)_{(\alpha, -)}^{ss} \subseteq \operatorname{rep}(Q, \beta)_{(\alpha', -)}^{ss} \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

This consists of all effective weights "weaker" than α .

The semi-stable locus of α with respect to β is:

 $\operatorname{rep}(Q,\beta)^{ss}_{\langle lpha,angle}$

The GIT-cone of α with respect to β :

$$\mathcal{C}(\beta)_{\alpha} = \{ \alpha' \in \mathcal{D}(\beta) | \operatorname{rep}(Q, \beta)_{(\alpha, -)}^{ss} \subseteq \operatorname{rep}(Q, \beta)_{(\alpha', -)}^{ss} \}$$

This consists of all effective weights "weaker" than α . The GIT-fan associated to (Q, β) is:

$$\mathcal{F}(\beta) = \{\mathcal{C}(\beta)_{\alpha} | \alpha \in \mathcal{D}(\beta)\} \cup \{\mathbf{0}\}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

A **fan** is finite a collection of (rational convex polyhedral) cones satisfying some additional properties. It is said to be pure of dimension n if all cones that are maximal with respect to inclusion are of dimension n.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

A fan is finite a collection of (rational convex polyhedral) cones satisfying some additional properties. It is said to be pure of dimension n if all cones that are maximal with respect to inclusion are of dimension n.

Theorem

 $\mathcal{F}(\beta)$ is a finite fan cover of $\mathcal{D}(\beta)$, and if β is a Schur root, then $\mathcal{F}(\beta)$ is a pure fan of dimension $|Q_0| - 1$.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

A fan is finite a collection of (rational convex polyhedral) cones satisfying some additional properties. It is said to be pure of dimension n if all cones that are maximal with respect to inclusion are of dimension n.

Theorem

 $\mathcal{F}(\beta)$ is a finite fan cover of $\mathcal{D}(\beta)$, and if β is a Schur root, then $\mathcal{F}(\beta)$ is a pure fan of dimension $|Q_0| - 1$.

A very useful property of pure fans for our result is the following:

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

A fan is finite a collection of (rational convex polyhedral) cones satisfying some additional properties. It is said to be pure of dimension n if all cones that are maximal with respect to inclusion are of dimension n.

Theorem

 $\mathcal{F}(\beta)$ is a finite fan cover of $\mathcal{D}(\beta)$, and if β is a Schur root, then $\mathcal{F}(\beta)$ is a pure fan of dimension $|Q_0| - 1$.

A very useful property of pure fans for our result is the following:

(Keicher, 2012) Let $\Sigma \subseteq \mathbb{Q}^n$ be a pure *n*-dimensional fan with convex support $|\Sigma|$, and let $\tau \in \Sigma$ be such that $\tau \cap |\Sigma|^\circ \neq \emptyset$. Then τ is the intersection over all $\sigma \in \Sigma^{(m)}$ satisfying $\tau \leq \sigma$.

Set

 $\mathcal{I} = \{ C(\beta)_{\alpha} | \beta \text{ is a Schur root and } C(\beta)_{\alpha} \text{ is maximal} \}$

$$\mathcal{I}_{\alpha} = \{ \mathcal{C} \in \mathcal{I} | \alpha \in \mathcal{C} \}$$

・ロト < 団ト < 三ト < 三ト < 三 ・ のへ(?)

Set

 $\mathcal{I} = \{ C(\beta)_{\alpha} | \beta \text{ is a Schur root and } C(\beta)_{\alpha} \text{ is maximal} \}$

$$\mathcal{I}_{\alpha} = \{ \mathcal{C} \in \mathcal{I} | \alpha \in \mathcal{C} \}$$

Theorem (Theorem 1)

Let Q be a connected, acyclic quiver. For $\alpha_1, \alpha_2 \in \mathbb{Q}^{Q_0}$, $\alpha_1 \sim_{GIT} \alpha_2$ if and only if $\mathcal{I}_{\alpha_1} = \mathcal{I}_{\alpha_2}$

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Set

 $\mathcal{I} = \{ C(\beta)_{\alpha} | \beta \text{ is a Schur root and } C(\beta)_{\alpha} \text{ is maximal} \}$

$$\mathcal{I}_{\alpha} = \{ \mathcal{C} \in \mathcal{I} | \alpha \in \mathcal{C} \}$$

Theorem (Theorem 1)

Let Q be a connected, acyclic quiver. For $\alpha_1, \alpha_2 \in \mathbb{Q}^{Q_0}$, $\alpha_1 \sim_{GIT} \alpha_2$ if and only if $\mathcal{I}_{\alpha_1} = \mathcal{I}_{\alpha_2}$

That is, we have a collection of cones parametrized by Schur roots which characterizes GIT-equivalence classes.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Assume
$$\mathcal{I}_{\alpha_1} = \mathcal{I}_{\alpha_2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ∽へぐ

Assume $\mathcal{I}_{\alpha_1} = \mathcal{I}_{\alpha_2}$ If β is $\langle \alpha_1, - \rangle$ -stable, then $\alpha_1 \in \mathcal{D}(\beta)^\circ$, and of course $\alpha_1 \in \mathcal{C}(\beta)_{\alpha_1}$.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

Assume $\mathcal{I}_{\alpha_1} = \mathcal{I}_{\alpha_2}$ If β is $\langle \alpha_1, - \rangle$ -stable, then $\alpha_1 \in \mathcal{D}(\beta)^\circ$, and of course $\alpha_1 \in \mathcal{C}(\beta)_{\alpha_1}$. We can apply Keicher's result to conclude that $\mathcal{C}(\beta)_{\alpha_1}$ is an intersection of all maximal cones of which it is a face.

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Assume $\mathcal{I}_{\alpha_1} = \mathcal{I}_{\alpha_2}$ If β is $\langle \alpha_1, - \rangle$ -stable, then $\alpha_1 \in \mathcal{D}(\beta)^\circ$, and of course $\alpha_1 \in \mathcal{C}(\beta)_{\alpha_1}$. We can apply Keicher's result to conclude that $\mathcal{C}(\beta)_{\alpha_1}$ is an intersection of all maximal cones of which it is a face. By the assumption, any such maximal cone contains α_2 as well. So, $\alpha_2 \in \mathcal{C}(\beta)_{\alpha_1}$. Similarly, $\alpha_1 \in \mathcal{C}(\beta)_{\alpha_2}$. Assume $\mathcal{I}_{\alpha_1} = \mathcal{I}_{\alpha_2}$ If β is $\langle \alpha_1, - \rangle$ -stable, then $\alpha_1 \in \mathcal{D}(\beta)^\circ$, and of course $\alpha_1 \in \mathcal{C}(\beta)_{\alpha_1}$. We can apply Keicher's result to conclude that $\mathcal{C}(\beta)_{\alpha_1}$ is an intersection of all maximal cones of which it is a face. By the assumption, any such maximal cone contains α_2 as well. So, $\alpha_2 \in \mathcal{C}(\beta)_{\alpha_1}$. Similarly, $\alpha_1 \in \mathcal{C}(\beta)_{\alpha_2}$. Now, if β is arbitrary, use a JH-filtration to break it into a sum of $\langle \alpha_1, - \rangle$ -stable factors.

(ロ)、(型)、(E)、(E)、(E)、(Q)、(Q)

If Q is tame, the collection of cones \mathcal{I} is exactly the collection \mathcal{J} defined by IPT. Precisely, C_l is a maximal GIT-cone, namely $\mathcal{C}(\delta)_{\alpha_l}$ where

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

 $\alpha_I = \delta + \sum_{j \neq a_i} \sum_{i=1}^N \beta_{ij}$

Precisely, C_I is a maximal GIT-cone, namely $C(\delta)_{\alpha_I}$ where $\alpha_I = \delta + \sum_{j \neq a_i} \sum_{i=1}^N \beta_{ij}$ Main ingredients in proof:

• Realize C_I as the orbit cone of a representation: $\Omega(Z_I)$, where Z_I is a direct sum of Z_i , where Z_i is the unique δ dimensional representation with regular socle of dimension β_{ia_i} .

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Precisely, C_I is a maximal GIT-cone, namely $C(\delta)_{\alpha_I}$ where $\alpha_I = \delta + \sum_{j \neq a_i} \sum_{i=1}^N \beta_{ij}$ Main ingredients in proof:

- Realize C_I as the orbit cone of a representation: $\Omega(Z_I)$, where Z_I is a direct sum of Z_i , where Z_i is the unique δ dimensional representation with regular socle of dimension β_{ia_i} .

Precisely, C_I is a maximal GIT-cone, namely $C(\delta)_{\alpha_I}$ where $\alpha_I = \delta + \sum_{j \neq a_i} \sum_{i=1}^N \beta_{ij}$ Main ingredients in proof:

- Realize C_I as the orbit cone of a representation: $\Omega(Z_I)$, where Z_I is a direct sum of Z_i , where Z_i is the unique δ dimensional representation with regular socle of dimension β_{ia_i} .
- Invoke a result that $C(\beta)_{\alpha} = \bigcap \Omega(W)$ (Chindris, "On GIT Fans for Quivers")

Let
$$Q = \tilde{\mathbb{A}}_1$$
:

Let
$$Q = \tilde{\mathbb{A}}_1$$
:

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Real Roots: (n, n+1) and (n+1, n) for $n \ge 0$

Let
$$Q = \tilde{\mathbb{A}}_1$$
:

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Real Roots: (n, n+1) and (n+1, n) for $n \ge 0$ Isotropic Roots: (n, n) for $n \ge 1$.

Let
$$Q = \tilde{\mathbb{A}}_1$$
:

▲ロ ▶ ▲ 理 ▶ ▲ 国 ▶ ▲ 国 ■ ● ● ● ● ●

Real Roots: (n, n + 1) and (n + 1, n) for $n \ge 0$ Isotropic Roots: (n, n) for $n \ge 1$. In particular, $\delta = (1, 1)$ is the unique isotropic Schur root.

Let
$$Q = \tilde{\mathbb{A}}_1$$
:

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Real Roots: (n, n + 1) and (n + 1, n) for $n \ge 0$ Isotropic Roots: (n, n) for $n \ge 1$. In particular, $\delta = (1, 1)$ is the unique isotropic Schur root. $\mathcal{D}((0, 1))$ is generated by (1, 2) and (-1, -2)

Let
$$Q = \tilde{\mathbb{A}}_1$$
:

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Real Roots: (n, n + 1) and (n + 1, n) for $n \ge 0$ Isotropic Roots: (n, n) for $n \ge 1$. In particular, $\delta = (1, 1)$ is the unique isotropic Schur root. $\mathcal{D}((0, 1))$ is generated by (1, 2) and (-1, -2) $\mathcal{D}((1, 0))$ is generated by (0, 1) and (0, -1)

Let
$$Q = \tilde{\mathbb{A}}_1$$
:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Real Roots: (n, n + 1) and (n + 1, n) for $n \ge 0$ Isotropic Roots: (n, n) for $n \ge 1$. In particular, $\delta = (1, 1)$ is the unique isotropic Schur root. $\mathcal{D}((0, 1))$ is generated by (1, 2) and (-1, -2) $\mathcal{D}((1, 0))$ is generated by (0, 1) and (0, -1)For $n \ge 1$, $\mathcal{D}((n, n + 1))$ is generated by (n + 1, n + 2), and $\mathcal{D}((n + 1, n))$ is generated by (n, n - 1).

Let
$$Q = \tilde{\mathbb{A}}_1$$
:

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Real Roots: (n, n + 1) and (n + 1, n) for $n \ge 0$ Isotropic Roots: (n, n) for $n \ge 1$. In particular, $\delta = (1, 1)$ is the unique isotropic Schur root. $\mathcal{D}((0, 1))$ is generated by (1, 2) and (-1, -2) $\mathcal{D}((1, 0))$ is generated by (0, 1) and (0, -1)For $n \ge 1$, $\mathcal{D}((n, n + 1))$ is generated by (n + 1, n + 2), and $\mathcal{D}((n + 1, n))$ is generated by (n, n - 1). Lastly, $\mathcal{D}(\delta)$ is generated by δ .

Rays extending through lattice points of y = x + 1and y = x - 1

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

æ

Two weights α_1 and α_2 are GIT equivalent if and only if they are on the same collection of rays.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

3

In this case, since the intersection of any two rays is (0,0), we have that α_1, α_2 are GIT-equivalent if they are

- ▶ both = (0,0)
- both in the same ray, i.e., α₁ = λα₂ for some λ ∈ Q

3

Sac

A D > A D > A D > A D >

- How can we get our hands on these maximal GIT-cones of Schur roots for wild quivers?
- Would a similar result hold, using similar techniques, for quivers with relations?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $Q = \tilde{\mathbb{A}}_2$:

We want to give an idea of the cones in \mathcal{I} . Recall that

$$\mathcal{I} = \{\mathcal{C}(\delta)_{\alpha_I}\}_{I \in \mathbb{R}} \cup \{\mathcal{D}(\beta)\}_{\beta}$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

where the union is over all real Schur roots β .

Starting with the dimension vectors of the projective and injective indecomposables, and applying the A-R translate, we get infinitely many real Schur roots:

Starting with the dimension vectors of the projective and injective indecomposables, and applying the A-R translate, we get infinitely many real Schur roots:

$$\underline{\dim}P_0 = (1,0,1) \xrightarrow{\tau^-} (2,2,3) \xrightarrow{\tau^-} (4,3,4) \xrightarrow{\tau^-} (5,5,6) \xrightarrow{\tau^-} \cdots$$

$$\underline{\dim}P_1 = (1,1,2) \xrightarrow{\tau^-} (3,2,3) \xrightarrow{\tau^-} (4,4,5) \xrightarrow{\tau^-} (6,5,6) \xrightarrow{\tau^-} \cdots$$

$$\underline{\dim}P_2 = (0,0,1) \xrightarrow{\tau^-} (2,1,2) \xrightarrow{\tau^-} (3,3,4) \xrightarrow{\tau^-} (5,4,5) \xrightarrow{\tau^-} \cdots$$

$$\underline{\dim}I_0 = (1,1,0) \xrightarrow{\tau} (2,3,2) \xrightarrow{\tau} (4,4,3) \xrightarrow{\tau} (5,6,5) \xrightarrow{\tau^-} \cdots$$

$$\underline{\dim}I_1 = (0,1,0) \xrightarrow{\tau} (2,2,1) \xrightarrow{\tau} (3,3,4) \xrightarrow{\tau} (5,5,4) \xrightarrow{\tau^-} \cdots$$

$$\underline{\dim}I_2 = (1,2,1) \xrightarrow{\tau} (3,3,2) \xrightarrow{\tau} (4,5,4) \xrightarrow{\tau} (6,6,5) \xrightarrow{\tau^-} \cdots$$

Starting with the dimension vectors of the projective and injective indecomposables, and applying the A-R translate, we get infinitely many real Schur roots:

$\underline{\dim}P_0 = (1,0,1)$	$\xrightarrow{\tau^{-}}$	(2,2,3)	$\xrightarrow{\tau^{-}}$	(4,3,4)	$\xrightarrow{\tau^-}$	(5,5,6)	$\xrightarrow{\tau^{-}}\cdots$
$\underline{\dim}P_1 = (1,1,2)$	$\xrightarrow{\tau^{-}}$	(3,2,3)	$\xrightarrow{\tau^{-}}$	(4,4,5)	$\xrightarrow{\tau^{-}}$	(6,5,6)	$\xrightarrow{\tau^{-}}\cdots$
$\underline{\dim}P_2 = (0,0,1)$	$\xrightarrow{\tau^{-}}$	(2,1,2)	$\xrightarrow{\tau^{-}}$	(3,3,4)	$\xrightarrow{\tau^{-}}$	(5,4,5)	$\xrightarrow{\tau^{-}} \cdots$
$\underline{\dim} I_0 = (1,1,0)$	$\xrightarrow{\tau}$	(2,3,2)	$\xrightarrow{\tau}$	(4,4,3)	$\xrightarrow{\tau}$	(5,6,5)	$\xrightarrow{\tau^{-}} \cdots$
$\underline{\dim}I_1 = (0,1,0)$	$\xrightarrow{\tau}$	(2,2,1)	$\xrightarrow{\tau}$	(3,4,3)	$\xrightarrow{\tau}$	(5,5,4)	$\xrightarrow{\tau^{-}} \cdots$
$\underline{\dim}I_2 = (1,2,1)$	$\xrightarrow{\tau}$	(3,3,2)	$\xrightarrow{\tau}$	(4,5,4)	$\xrightarrow{\tau}$	(6,6,5)	$\xrightarrow{\tau^{-}} \cdots$

Each one of these real Schur roots will correspond to a $\mathcal{D}(\beta) \in \mathcal{I}$.

For example, if we take $\beta = (0,0,1)$, we have $\mathcal{D}(\beta)$ is generated by $-\underline{\dim}P_0 = (-1,0,-1)$, $-\underline{\dim}P_1 = (-1,-1,-2)$ and (1,0,1), which is $-\langle -,\beta \rangle$ -stable.

For example, if we take $\beta = (0,0,1)$, we have $\mathcal{D}(\beta)$ is generated by $-\underline{\dim}P_0 = (-1,0,-1)$, $-\underline{\dim}P_1 = (-1,-1,-2)$ and (1,0,1), which is $-\langle -,\beta \rangle$ -stable.

Thus, $\mathcal{D}(\beta)$ looks like:

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨー の々ぐ

If we take $\beta = (1, 1, 2)$, which is sincere, we have $\mathcal{D}(\beta)$ is generated by (0, 1, 1) and (2, 1, 2) which are both $-\langle -, \beta \rangle$ -stable.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

If we take $\beta = (1, 1, 2)$, which is sincere, we have $\mathcal{D}(\beta)$ is generated by (0, 1, 1) and (2, 1, 2) which are both $-\langle -, \beta \rangle$ -stable.

Thus, $\mathcal{D}(\beta)$ looks like:

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

Now, turning to the regular representations, we have $\delta = (1, 1, 1)$.

・ロト < 団ト < 三ト < 三ト < 三 のへ(?)

$$\langle \delta, \beta \rangle = y - z = 0$$

$$\begin{cases} \langle \delta, \beta \rangle = y - z = 0\\ \langle \beta, \beta \rangle = x^2 + y^2 + z^2 - xy - xz - yz = 1 \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

$$\langle \delta, \beta \rangle = y - z = 0$$

$$\langle \beta, \beta \rangle = x^{2} + y^{2} - 2xy = 1$$

$$\begin{cases} \langle \delta, \beta \rangle = y - z = 0\\ \langle \beta, \beta \rangle = x^2 + y^2 - 2xy = 1\\ \beta \le \delta, \text{ i.e., } x \le 1, y \le 1, z \le 1 \end{cases}$$

$$\begin{cases} \langle \delta, \beta \rangle = y - z = 0\\ \langle \beta, \beta \rangle = x^2 + y^2 - 2xy = 1\\ \beta \le \delta, \text{ i.e., } x \le 1, y \le 1, z \le 1 \end{cases}$$

So, the only quasi-simples are (0,1,1) and (1,0,0). That is, we have a single non-homogeneous tube in the regular component of the A-R quiver, and it has period 2.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

$$\begin{cases} \langle \delta, \beta \rangle = y - z = 0\\ \langle \beta, \beta \rangle = x^2 + y^2 - 2xy = 1\\ \beta \le \delta, \text{ i.e., } x \le 1, y \le 1, z \le 1 \end{cases}$$

So, the only quasi-simples are (0,1,1) and (1,0,0). That is, we have a single non-homogeneous tube in the regular component of the A-R quiver, and it has period 2.

Now, $\beta_{11} = (0, 1, 1)$ and $\beta_{12} = (1, 0, 0)$ are themselves real Schur roots, and so $\mathcal{D}(\beta_{11})$ and $\mathcal{D}(\beta_{12})$ are in \mathcal{I} .

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Lastly, we need the $C(\delta)_{\alpha_l}$'s.

Lastly, we need the $C(\delta)_{\alpha_l}$'s.

For I = (1), we have $\alpha_I = \delta + \beta_{12} = (2, 1, 1)$ and $C(\delta)_{\alpha_I}$ is generated, as a cone, by (1, 1, 1) and (1, 0, 0).

Lastly, we need the $C(\delta)_{\alpha_l}$'s.

For I = (1), we have $\alpha_I = \delta + \beta_{12} = (2, 1, 1)$ and $C(\delta)_{\alpha_I}$ is generated, as a cone, by (1, 1, 1) and (1, 0, 0).

For I = (2), we have $\alpha_I = \delta + \beta_{11} = (1, 2, 2)$ and $C(\delta)_{\alpha_I}$ is generated, as a cone, by (1, 1, 1) and (0, 1, 1).

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Lastly, we need the $C(\delta)_{\alpha_l}$'s.

For I = (1), we have $\alpha_I = \delta + \beta_{12} = (2, 1, 1)$ and $C(\delta)_{\alpha_I}$ is generated, as a cone, by (1, 1, 1) and (1, 0, 0).

For I = (2), we have $\alpha_I = \delta + \beta_{11} = (1, 2, 2)$ and $C(\delta)_{\alpha_I}$ is generated, as a cone, by (1, 1, 1) and (0, 1, 1).

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

[Animation with many of the cones from \mathcal{I}]