GIT-Equivalence and Semi-Stable Subcategories of Quiver Representations

Valerie Granger
Joint work with Calin Chindris

COKER

November 21, 2016

Notation

- $Q=\left(Q_{0}, Q_{1}, t, h\right)$ is a quiver

Notation

- $Q=\left(Q_{0}, Q_{1}, t, h\right)$ is a quiver
- $K=$ algebraically closed field of characteristic 0

Notation

- $Q=\left(Q_{0}, Q_{1}, t, h\right)$ is a quiver
- $K=$ algebraically closed field of characteristic 0
- $V=$ a representation of the quiver Q

Notation

- $Q=\left(Q_{0}, Q_{1}, t, h\right)$ is a quiver
- $K=$ algebraically closed field of characteristic 0
- $V=$ a representation of the quiver Q
- $V(i)$ is the K-vector space at vertex i

Notation

- $Q=\left(Q_{0}, Q_{1}, t, h\right)$ is a quiver
- $K=$ algebraically closed field of characteristic 0
- $V=$ a representation of the quiver Q
- $V(i)$ is the K-vector space at vertex i
- $V(a)$ is the K-linear map along arrow a.

Notation

- $Q=\left(Q_{0}, Q_{1}, t, h\right)$ is a quiver
- $K=$ algebraically closed field of characteristic 0
- $V=$ a representation of the quiver Q
- $V(i)$ is the K-vector space at vertex i
- $V(a)$ is the K-linear map along arrow a.
- $\underline{\operatorname{dim} V}=$ the dimension vector of V.

Notation

- $Q=\left(Q_{0}, Q_{1}, t, h\right)$ is a quiver
- $K=$ algebraically closed field of characteristic 0
- $V=$ a representation of the quiver Q
- $V(i)$ is the K-vector space at vertex i
- $V(a)$ is the K-linear map along arrow a.
- $\operatorname{dim} V=$ the dimension vector of V.
- $\operatorname{rep}(Q)$ is the category of finite dimensional quiver representations.

Euler Inner Product and Semi-stability

Given a quiver Q with vertex set Q_{0} and arrow set Q_{1}, we define the Euler inner product of two vectors α and β in $\mathbb{Z}^{Q_{0}}$ to be

Euler Inner Product and Semi-stability

Given a quiver Q with vertex set Q_{0} and arrow set Q_{1}, we define the Euler inner product of two vectors α and β in $\mathbb{Z}^{Q_{0}}$ to be

$$
\langle\alpha, \beta\rangle=\sum_{i \in Q_{0}} \alpha(i) \beta(i)-\sum_{a \in Q_{1}} \alpha(t a) \beta(\text { ha })
$$

Euler Inner Product and Semi-stability

Given a quiver Q with vertex set Q_{0} and arrow set Q_{1}, we define the Euler inner product of two vectors α and β in $\mathbb{Z}^{Q_{0}}$ to be

$$
\langle\alpha, \beta\rangle=\sum_{i \in Q_{0}} \alpha(i) \beta(i)-\sum_{a \in Q_{1}} \alpha(t a) \beta(\text { ha })
$$

From now on, assume that Q is a connected acyclic quiver.

Euler Inner Product and Semi-stability

Given a quiver Q with vertex set Q_{0} and arrow set Q_{1}, we define the Euler inner product of two vectors α and β in $\mathbb{Z}^{Q_{0}}$ to be

$$
\langle\alpha, \beta\rangle=\sum_{i \in Q_{0}} \alpha(i) \beta(i)-\sum_{a \in Q_{1}} \alpha(t a) \beta(\text { ha })
$$

From now on, assume that Q is a connected acyclic quiver.
Let $\alpha \in \mathbb{Q}^{Q_{0}}$.
A representation $V \in \operatorname{rep}(Q)$ is said to be $\langle\alpha,-\rangle$-semi-stable if:

$$
\langle\alpha, \underline{\operatorname{dim}} V\rangle=0 \text { and }\left\langle\alpha, \underline{\operatorname{dim}} V^{\prime}\right\rangle \leq 0
$$

for all subrepresentations $V^{\prime} \leq V$.

Euler Inner Product and Semi-stability

Given a quiver Q with vertex set Q_{0} and arrow set Q_{1}, we define the Euler inner product of two vectors α and β in $\mathbb{Z}^{Q_{0}}$ to be

$$
\langle\alpha, \beta\rangle=\sum_{i \in Q_{o}} \alpha(i) \beta(i)-\sum_{a \in Q_{1}} \alpha(t a) \beta(h a)
$$

From now on, assume that Q is a connected acyclic quiver.
Let $\alpha \in \mathbb{Q}^{Q_{0}}$.
A representation $V \in \operatorname{rep}(Q)$ is said to be $\langle\alpha,-\rangle$-semi-stable if:

$$
\langle\alpha, \underline{\operatorname{dim}} V\rangle=0 \text { and }\left\langle\alpha, \underline{\operatorname{dim}} V^{\prime}\right\rangle \leq 0
$$

for all subrepresentations $V^{\prime} \leq V$.
Likewise, it is $\langle\alpha,-\rangle$-stable if the inequality is strict for proper, non-trivial subrepresentations.

Schur Representations and Generic Dimension Vectors

Recall that a representation V is called Schur if $\operatorname{Hom}_{Q}(V, V)=K$.

Schur Representations and Generic Dimension Vectors

Recall that a representation V is called Schur if $\operatorname{Hom}_{Q}(V, V)=K$.

We say a dimension vector β is a Schur root if there exists a β-dimensional Schur representation.

Schur Representations and Generic Dimension Vectors

Recall that a representation V is called Schur if $\operatorname{Hom}_{Q}(V, V)=K$.

We say a dimension vector β is a Schur root if there exists a β-dimensional Schur representation.

We say that $\beta^{\prime} \rightarrow \beta$ if every β-dimensional representation has a subrepresentation of dimension β^{\prime}.

Semi-Stability

$\operatorname{rep}(Q)_{\langle\alpha,-\rangle}^{s s}$ is the full subcategory of $\operatorname{rep}(Q)$ whose objects are $\langle\alpha,-\rangle$-semi-stable.

Semi-Stability

$\operatorname{rep}(Q)_{\langle\alpha,-\rangle}^{s s}$ is the full subcategory of $\operatorname{rep}(Q)$ whose objects are $\langle\alpha,-\rangle$-semi-stable.

We say that β is $\langle\alpha,-\rangle$-(semi)-stable if there exists a β-dimensional, $\langle\alpha,-\rangle$-(semi)-stable representation. This is equivalent to saying

Semi-Stability

$\operatorname{rep}(Q)_{\langle\alpha,-\rangle}^{s s}$ is the full subcategory of $\operatorname{rep}(Q)$ whose objects are $\langle\alpha,-\rangle$-semi-stable.

We say that β is $\langle\alpha,-\rangle$-(semi)-stable if there exists a β-dimensional, $\langle\alpha,-\rangle$-(semi)-stable representation. This is equivalent to saying

$$
\langle\alpha, \beta\rangle=0 \text { and }\left\langle\alpha, \beta^{\prime}\right\rangle \leq 0 \text { for all } \beta^{\prime} \hookrightarrow \beta
$$

Semi-Stability

$\operatorname{rep}(Q)_{\langle\alpha,-\rangle}^{s s}$ is the full subcategory of $\operatorname{rep}(Q)$ whose objects are $\langle\alpha,-\rangle$-semi-stable.

We say that β is $\langle\alpha,-\rangle$-(semi)-stable if there exists a β-dimensional, $\langle\alpha,-\rangle$-(semi)-stable representation. This is equivalent to saying

$$
\langle\alpha, \beta\rangle=0 \text { and }\left\langle\alpha, \beta^{\prime}\right\rangle \leq 0 \text { for all } \beta^{\prime} \hookrightarrow \beta
$$

And respectively, β is $\langle\alpha,-\rangle$-stable if the second inequality is strict for $\beta^{\prime} \neq 0, \beta$.

The cone of effective weights

The cone of effective weights for a dimension vector β :

$$
\mathcal{D}(\beta)=\left\{\alpha \in \mathbb{Q}^{Q_{o}} \mid\langle\alpha, \beta\rangle=0,\left\langle\alpha, \beta^{\prime}\right\rangle \leq 0, \beta^{\prime} \leftrightarrow \beta\right\}
$$

The cone of effective weights

The cone of effective weights for a dimension vector β :

$$
\mathcal{D}(\beta)=\left\{\alpha \in \mathbb{Q}^{Q_{o}} \mid\langle\alpha, \beta\rangle=0,\left\langle\alpha, \beta^{\prime}\right\rangle \leq 0, \beta^{\prime} \leftrightarrow \beta\right\}
$$

Theorem (Schofield)

β is a Schur root if and only if
$\mathcal{D}(\beta)^{\circ}=\left\{\alpha \in \mathbb{Q}^{Q_{0}} \mid\langle\alpha, \beta\rangle=0,\left\langle\alpha, \beta^{\prime}\right\rangle<0 \forall \beta^{\prime} \hookrightarrow \beta, \beta \neq 0, \beta\right\}$ is non-empty if and only if β is $\langle\beta,-\rangle-\langle-, \beta\rangle$-stable.

Big Question

Two rational vectors $\alpha_{1}, \alpha_{2} \in \mathbb{Q}^{Q_{0}}$, are said to be GIT-equivalent (or ss-equivalent) if:

$$
\operatorname{rep}(Q)_{\left\langle\alpha_{1},-\right\rangle}^{s s}=\operatorname{rep}(Q)_{\left\langle\alpha_{2},-\right\rangle}^{s s}
$$

Big Question

Two rational vectors $\alpha_{1}, \alpha_{2} \in \mathbb{Q}^{Q_{0}}$, are said to be GIT-equivalent (or ss-equivalent) if:

$$
\operatorname{rep}(Q)_{\left\langle\alpha_{1},-\right\rangle}^{s s}=\operatorname{rep}(Q)_{\left\langle\alpha_{2},-\right\rangle}^{s s}
$$

Main Question: Find necessary and sufficient conditions for α_{1} and α_{2} to be GIT-equivalent.

Big Question

Two rational vectors $\alpha_{1}, \alpha_{2} \in \mathbb{Q}^{Q_{0}}$, are said to be GIT-equivalent (or ss-equivalent) if:

$$
\operatorname{rep}(Q)_{\left\langle\alpha_{1},-\right\rangle}^{s s}=\operatorname{rep}(Q)_{\left\langle\alpha_{2},-\right\rangle}^{s s}
$$

Main Question: Find necessary and sufficient conditions for α_{1} and α_{2} to be GIT-equivalent.

Colin Ingalls, Charles Paquette, and Hugh Thomas gave a characterization in the case that Q is tame, which was published in 2015. Their work was motivated by studying what subcategories of $\operatorname{rep}(Q)$ arise as semi-stable-subcategories, with an eye towards forming a lattice of subcategories.

A tiny bit of AR Theory for tame path algebras

We can build the Auslander-Reiten quiver, Γ, of the path algebra $K Q$.

A tiny bit of AR Theory for tame path algebras

We can build the Auslander-Reiten quiver, Γ, of the path algebra $K Q$.

- Each indecomposable KQ-module corresponds to a vertex in 「

A tiny bit of AR Theory for tame path algebras

We can build the Auslander-Reiten quiver, Γ, of the path algebra $K Q$.

- Each indecomposable KQ-module corresponds to a vertex in 「
- All projective indecomposables lie in the same connected component, and all indecomposables in that component (called preprojectives) are exceptional (i.e., their dimension vectors are real Schur roots)

A tiny bit of AR Theory for tame path algebras

We can build the Auslander-Reiten quiver, Γ, of the path algebra $K Q$.

- Each indecomposable KQ-module corresponds to a vertex in 「
- All projective indecomposables lie in the same connected component, and all indecomposables in that component (called preprojectives) are exceptional (i.e., their dimension vectors are real Schur roots)
- Similarly for injectives/preinjectives

A tiny bit of AR Theory for tame path algebras

We can build the Auslander-Reiten quiver, Γ, of the path algebra $K Q$.

- Each indecomposable KQ-module corresponds to a vertex in 「
- All projective indecomposables lie in the same connected component, and all indecomposables in that component (called preprojectives) are exceptional (i.e., their dimension vectors are real Schur roots)
- Similarly for injectives/preinjectives
- Remaining indecomposables occur in tubes

A tiny bit of AR Theory for tame path algebras

We can build the Auslander-Reiten quiver, Γ, of the path algebra $K Q$.

- Each indecomposable KQ-module corresponds to a vertex in 「
- All projective indecomposables lie in the same connected component, and all indecomposables in that component (called preprojectives) are exceptional (i.e., their dimension vectors are real Schur roots)
- Similarly for injectives/preinjectives
- Remaining indecomposables occur in tubes
- Homogeneous tubes (infinitely many)

A tiny bit of AR Theory for tame path algebras

We can build the Auslander-Reiten quiver, Γ, of the path algebra $K Q$.

- Each indecomposable KQ-module corresponds to a vertex in 「
- All projective indecomposables lie in the same connected component, and all indecomposables in that component (called preprojectives) are exceptional (i.e., their dimension vectors are real Schur roots)
- Similarly for injectives/preinjectives
- Remaining indecomposables occur in tubes
- Homogeneous tubes (infinitely many)
- Finitely many non-homogeneous tubes

Non-Homogeneous tubes

Now for example, a rank 3 tube looks like:
\uparrow Not Schur

δ-dimensional, Schur
\downarrow Schur

Previous work on the tame case

IPT did the following:

- Label the non-homogeneous regular tubes in the A-R quiver $1, \ldots, N$, and let the period of the $i^{t h}$ tube be r_{i}.

Previous work on the tame case

IPT did the following:

- Label the non-homogeneous regular tubes in the A-R quiver $1, \ldots, N$, and let the period of the $i^{t h}$ tube be r_{i}.
- Let $\beta_{i, j}$ be the $j^{\text {th }}$ quasi-simple root from the $i^{\text {th }}$ tube, where $1 \leq j \leq r_{i}$.

Previous work on the tame case

IPT did the following:

- Label the non-homogeneous regular tubes in the A-R quiver $1, \ldots, N$, and let the period of the $i^{t h}$ tube be r_{i}.
- Let $\beta_{i, j}$ be the $j^{\text {th }}$ quasi-simple root from the $i^{\text {th }}$ tube, where $1 \leq j \leq r_{i}$.
- Set l to be the multi-index $\left(a_{1}, \ldots, a_{N}\right)$, where $1 \leq a_{i} \leq r_{i}$, and R to be the set of all permissible such multi-indices.

Previous work on the tame case

IPT did the following:

- Label the non-homogeneous regular tubes in the A-R quiver $1, \ldots, N$, and let the period of the $i^{t h}$ tube be r_{i}.
- Let $\beta_{i, j}$ be the $j^{\text {th }}$ quasi-simple root from the $i^{\text {th }}$ tube, where $1 \leq j \leq r_{i}$.
- Set l to be the multi-index $\left(a_{1}, \ldots, a_{N}\right)$, where $1 \leq a_{i} \leq r_{i}$, and R to be the set of all permissible such multi-indices.
- Define the cone C_{I} to be the rational convex polyhedral cone generated by δ, together with $\beta_{i, j}$, except for $\beta_{i a_{i}}$.

Previous work on the tame case

Define $\mathcal{J}=\left\{C_{l}\right\}_{\nmid \in R} \cup\{\mathcal{D}(\beta)\}_{\beta}$, where β is a real Schur root. Set $\mathcal{J}_{\alpha}=\{\mathcal{C} \in \mathcal{J} \mid \alpha \in \mathcal{C}\}$.

Previous work on the tame case

Define $\mathcal{J}=\left\{C_{l}\right\}_{\text {lGR }} \cup\{\mathcal{D}(\beta)\}_{\beta}$, where β is a real Schur root. Set $\mathcal{J}_{\alpha}=\{\mathcal{C} \in \mathcal{J} \mid \alpha \in \mathcal{C}\}$.

Theorem (Ingalls, Paquette, Thomas)

For $\alpha_{1}, \alpha_{2} \in \mathbb{Z}^{Q_{0}}$, we have that α_{1} and α_{2} are GIT equivalent if and only if $\mathcal{J}_{\alpha_{1}}=\mathcal{J}_{\alpha_{2}}$.

The GIT-cone

Let Q be any acyclic quiver.

The GIT-cone

Let Q be any acyclic quiver.
The semi-stable locus of α with respect to β is:

$$
\operatorname{rep}(Q, \beta)_{\langle\alpha,-\rangle}^{s s}
$$

The GIT-cone

Let Q be any acyclic quiver.
The semi-stable locus of α with respect to β is:

$$
\operatorname{rep}(Q, \beta)_{\langle\alpha,-\rangle}^{s s}
$$

The GIT-cone of α with respect to β :

$$
\mathcal{C}(\beta)_{\alpha}=\left\{\alpha^{\prime} \in \mathcal{D}(\beta) \mid \operatorname{rep}(Q, \beta)_{\langle\alpha,-\rangle}^{s s} \subseteq \operatorname{rep}(Q, \beta)_{\left\langle\alpha^{\prime},-\right\rangle}^{s s}\right\}
$$

The GIT-cone

Let Q be any acyclic quiver.
The semi-stable locus of α with respect to β is:

$$
\operatorname{rep}(Q, \beta)_{\langle\alpha,-\rangle}^{s s}
$$

The GIT-cone of α with respect to β :

$$
\mathcal{C}(\beta)_{\alpha}=\left\{\alpha^{\prime} \in \mathcal{D}(\beta) \mid \operatorname{rep}(Q, \beta)_{\langle\alpha,-\rangle}^{s s} \subseteq \operatorname{rep}(Q, \beta)_{\left\langle\alpha^{\prime},-\right\rangle}^{s s}\right\}
$$

This consists of all effective weights "weaker" than α.

The GIT-cone

Let Q be any acyclic quiver.
The semi-stable locus of α with respect to β is:

$$
\operatorname{rep}(Q, \beta)_{\langle\alpha,-\rangle}^{s s}
$$

The GIT-cone of α with respect to β :

$$
\mathcal{C}(\beta)_{\alpha}=\left\{\alpha^{\prime} \in \mathcal{D}(\beta) \mid \operatorname{rep}(Q, \beta)_{\langle\alpha,-\rangle}^{s s} \subseteq \operatorname{rep}(Q, \beta)_{\left\langle\alpha^{\prime},-\right\rangle}^{s s}\right\}
$$

This consists of all effective weights "weaker" than α. The GIT-fan associated to (Q, β) is:

$$
\mathcal{F}(\beta)=\left\{\mathcal{C}(\beta)_{\alpha} \mid \alpha \in \mathcal{D}(\beta)\right\} \cup\{0\}
$$

A few remarks about fans

A fan is finite a collection of (rational convex polyhedral) cones satisfying some additional properties. It is said to be pure of dimension n if all cones that are maximal with respect to inclusion are of dimension n.

A few remarks about fans

A fan is finite a collection of (rational convex polyhedral) cones satisfying some additional properties. It is said to be pure of dimension n if all cones that are maximal with respect to inclusion are of dimension n.

Theorem

$\mathcal{F}(\beta)$ is a finite fan cover of $\mathcal{D}(\beta)$, and if β is a Schur root, then $\mathcal{F}(\beta)$ is a pure fan of dimension $\left|Q_{0}\right|-1$.

A few remarks about fans

A fan is finite a collection of (rational convex polyhedral) cones satisfying some additional properties. It is said to be pure of dimension n if all cones that are maximal with respect to inclusion are of dimension n.

Theorem

$\mathcal{F}(\beta)$ is a finite fan cover of $\mathcal{D}(\beta)$, and if β is a Schur root, then $\mathcal{F}(\beta)$ is a pure fan of dimension $\left|Q_{0}\right|-1$.

A very useful property of pure fans for our result is the following:

A few remarks about fans

A fan is finite a collection of (rational convex polyhedral) cones satisfying some additional properties. It is said to be pure of dimension n if all cones that are maximal with respect to inclusion are of dimension n.

Theorem

$\mathcal{F}(\beta)$ is a finite fan cover of $\mathcal{D}(\beta)$, and if β is a Schur root, then $\mathcal{F}(\beta)$ is a pure fan of dimension $\left|Q_{0}\right|-1$.

A very useful property of pure fans for our result is the following:
(Keicher, 2012) Let $\Sigma \subseteq \mathbb{Q}^{n}$ be a pure n-dimensional fan with convex support $|\Sigma|$, and let $\tau \in \Sigma$ be such that $\tau \cap|\Sigma|^{\circ} \neq \varnothing$. Then τ is the intersection over all $\sigma \in \Sigma^{(m)}$ satisfying $\tau \leq \sigma$.

Main Theorem

Set

$$
\begin{aligned}
& \mathcal{I}=\left\{C(\beta)_{\alpha} \mid \beta \text { is a Schur root and } C(\beta)_{\alpha} \text { is maximal }\right\} \\
& \qquad \mathcal{I}_{\alpha}=\{\mathcal{C} \in \mathcal{I} \mid \alpha \in \mathcal{C}\}
\end{aligned}
$$

Main Theorem

Set

$$
\begin{aligned}
& \mathcal{I}=\left\{C(\beta)_{\alpha} \mid \beta \text { is a Schur root and } C(\beta)_{\alpha} \text { is maximal }\right\} \\
& \qquad \mathcal{I}_{\alpha}=\{\mathcal{C} \in \mathcal{I} \mid \alpha \in \mathcal{C}\}
\end{aligned}
$$

Theorem (Theorem 1)
Let Q be a connected, acyclic quiver. For $\alpha_{1}, \alpha_{2} \in \mathbb{Q}^{Q_{0}}, \alpha_{1} \sim_{G I T} \alpha_{2}$ if and only if $\mathcal{I}_{\alpha_{1}}=\mathcal{I}_{\alpha_{2}}$

Main Theorem

Set

$$
\begin{aligned}
& \mathcal{I}=\left\{C(\beta)_{\alpha} \mid \beta \text { is a Schur root and } C(\beta)_{\alpha} \text { is maximal }\right\} \\
& \qquad \mathcal{I}_{\alpha}=\{\mathcal{C} \in \mathcal{I} \mid \alpha \in \mathcal{C}\}
\end{aligned}
$$

Theorem (Theorem 1)
Let Q be a connected, acyclic quiver. For $\alpha_{1}, \alpha_{2} \in \mathbb{Q}^{Q_{0}}, \alpha_{1} \sim G I T \alpha_{2}$ if and only if $\mathcal{I}_{\alpha_{1}}=\mathcal{I}_{\alpha_{2}}$

That is, we have a collection of cones parametrized by Schur roots which characterizes GIT-equivalence classes.

Idea of Proof

Assume $\mathcal{I}_{\alpha_{1}}=\mathcal{I}_{\alpha_{2}}$

Idea of Proof

Assume $\mathcal{I}_{\alpha_{1}}=\mathcal{I}_{\alpha_{2}}$
If β is $\left\langle\alpha_{1},-\right\rangle$-stable, then $\alpha_{1} \in \mathcal{D}(\beta)^{\circ}$, and of course $\alpha_{1} \in \mathcal{C}(\beta)_{\alpha_{1}}$.

Idea of Proof

Assume $\mathcal{I}_{\alpha_{1}}=\mathcal{I}_{\alpha_{2}}$
If β is $\left\langle\alpha_{1},-\right\rangle$-stable, then $\alpha_{1} \in \mathcal{D}(\beta)^{\circ}$, and of course $\alpha_{1} \in \mathcal{C}(\beta)_{\alpha_{1}}$. We can apply Keicher's result to conclude that $\mathcal{C}(\beta)_{\alpha_{1}}$ is an intersection of all maximal cones of which it is a face.

Idea of Proof

Assume $\mathcal{I}_{\alpha_{1}}=\mathcal{I}_{\alpha_{2}}$
If β is $\left\langle\alpha_{1},-\right\rangle$-stable, then $\alpha_{1} \in \mathcal{D}(\beta)^{\circ}$, and of course $\alpha_{1} \in \mathcal{C}(\beta)_{\alpha_{1}}$. We can apply Keicher's result to conclude that $\mathcal{C}(\beta)_{\alpha_{1}}$ is an intersection of all maximal cones of which it is a face.
By the assumption, any such maximal cone contains α_{2} as well. So, $\alpha_{2} \in \mathcal{C}(\beta)_{\alpha_{1}}$. Similarly, $\alpha_{1} \in \mathcal{C}(\beta)_{\alpha_{2}}$.

Idea of Proof

Assume $\mathcal{I}_{\alpha_{1}}=\mathcal{I}_{\alpha_{2}}$
If β is $\left\langle\alpha_{1},-\right\rangle$-stable, then $\alpha_{1} \in \mathcal{D}(\beta)^{\circ}$, and of course $\alpha_{1} \in \mathcal{C}(\beta)_{\alpha_{1}}$. We can apply Keicher's result to conclude that $\mathcal{C}(\beta)_{\alpha_{1}}$ is an intersection of all maximal cones of which it is a face.
By the assumption, any such maximal cone contains α_{2} as well.
So, $\alpha_{2} \in \mathcal{C}(\beta)_{\alpha_{1}}$. Similarly, $\alpha_{1} \in \mathcal{C}(\beta)_{\alpha_{2}}$.
Now, if β is arbitrary, use a JH-filtration to break it into a sum of $\left\langle\alpha_{1},-\right\rangle$-stable factors.

The tame case

If Q is tame, the collection of cones \mathcal{I} is exactly the collection \mathcal{J} defined by IPT.

The tame case

If Q is tame, the collection of cones \mathcal{I} is exactly the collection \mathcal{J} defined by IPT.
Precisely, C_{l} is a maximal GIT-cone, namely $\mathcal{C}(\delta)_{\alpha_{l}}$ where $\alpha_{I}=\delta+\sum_{j \neq a_{i}} \sum_{i=1}^{N} \beta_{i j}$

The tame case

If Q is tame, the collection of cones \mathcal{I} is exactly the collection \mathcal{J} defined by IPT.
Precisely, C_{l} is a maximal GIT-cone, namely $\mathcal{C}(\delta)_{\alpha_{l}}$ where $\alpha_{I}=\delta+\sum_{j \neq a_{i}} \sum_{i=1}^{N} \beta_{i j}$ Main ingredients in proof:

- Realize C_{l} as the orbit cone of a representation: $\Omega\left(Z_{l}\right)$, where Z_{l} is a direct sum of Z_{i}, where Z_{i} is the unique δ dimensional representation with regular socle of dimension $\beta_{i a_{i}}$.

The tame case

If Q is tame, the collection of cones \mathcal{I} is exactly the collection \mathcal{J} defined by IPT.
Precisely, C_{l} is a maximal GIT-cone, namely $\mathcal{C}(\delta)_{\alpha_{l}}$ where $\alpha_{I}=\delta+\sum_{j \neq a_{i}} \sum_{i=1}^{N} \beta_{i j}$ Main ingredients in proof:

- Realize C_{l} as the orbit cone of a representation: $\Omega\left(Z_{l}\right)$, where Z_{l} is a direct sum of Z_{i}, where Z_{i} is the unique δ dimensional representation with regular socle of dimension $\beta_{i a_{i}}$.
- Show that the Z_{i} 's and the homogeneous δ-dimensional representations are the only δ-dimensional representations which are polystable with respect to the weight $\alpha_{I}=\delta+\sum_{j \neq a_{i}} \sum_{i=1}^{N} \beta_{i j}$

The tame case

If Q is tame, the collection of cones \mathcal{I} is exactly the collection \mathcal{J} defined by IPT.
Precisely, C_{l} is a maximal GIT-cone, namely $\mathcal{C}(\delta)_{\alpha_{l}}$ where $\alpha_{I}=\delta+\sum_{j \neq a_{i}} \sum_{i=1}^{N} \beta_{i j}$
Main ingredients in proof:

- Realize C_{l} as the orbit cone of a representation: $\Omega\left(Z_{l}\right)$, where Z_{l} is a direct sum of Z_{i}, where Z_{i} is the unique δ dimensional representation with regular socle of dimension $\beta_{i a_{i}}$.
- Show that the Z_{i} 's and the homogeneous δ-dimensional representations are the only δ-dimensional representations which are polystable with respect to the weight $\alpha_{I}=\delta+\sum_{j \neq a_{i}} \sum_{i=1}^{N} \beta_{i j}$
- Invoke a result that $\mathcal{C}(\beta)_{\alpha}=\cap \Omega(W)$ (Chindris, "On GIT Fans for Quivers")

Example

Let $Q=\tilde{\mathbb{A}}_{1}$:

Example

Let $Q=\tilde{\mathbb{A}}_{1}$:

Real Roots: $(n, n+1)$ and $(n+1, n)$ for $n \geq 0$

Example

$$
\text { Let } Q=\tilde{\mathbb{A}}_{1} \text { : }
$$

Real Roots: $(n, n+1)$ and $(n+1, n)$ for $n \geq 0$ Isotropic Roots: (n, n) for $n \geq 1$.

Example

$$
\text { Let } Q=\tilde{\mathbb{A}}_{1} \text { : }
$$

Real Roots: $(n, n+1)$ and $(n+1, n)$ for $n \geq 0$
Isotropic Roots: (n, n) for $n \geq 1$.
In particular, $\delta=(1,1)$ is the unique isotropic Schur root.

Example

$$
\text { Let } Q=\tilde{\mathbb{A}}_{1} \text { : }
$$

Real Roots: $(n, n+1)$ and $(n+1, n)$ for $n \geq 0$ Isotropic Roots: (n, n) for $n \geq 1$.
In particular, $\delta=(1,1)$ is the unique isotropic Schur root. $\mathcal{D}((0,1))$ is generated by $(1,2)$ and $(-1,-2)$

Example

$$
\text { Let } Q=\tilde{\mathbb{A}}_{1} \text { : }
$$

Real Roots: $(n, n+1)$ and $(n+1, n)$ for $n \geq 0$ Isotropic Roots: (n, n) for $n \geq 1$.
In particular, $\delta=(1,1)$ is the unique isotropic Schur root.
$\mathcal{D}((0,1))$ is generated by $(1,2)$ and $(-1,-2)$ $\mathcal{D}((1,0))$ is generated by $(0,1)$ and $(0,-1)$

Example

Let $Q=\tilde{\mathbb{A}}_{1}$:

Real Roots: $(n, n+1)$ and $(n+1, n)$ for $n \geq 0$
Isotropic Roots: (n, n) for $n \geq 1$.
In particular, $\delta=(1,1)$ is the unique isotropic Schur root.
$\mathcal{D}((0,1))$ is generated by $(1,2)$ and $(-1,-2)$
$\mathcal{D}((1,0))$ is generated by $(0,1)$ and $(0,-1)$
For $n \geq 1, \mathcal{D}((n, n+1))$ is generated by $(n+1, n+2)$, and $\mathcal{D}((n+1, n))$ is generated by $(n, n-1)$.

Example

Let $Q=\tilde{\mathbb{A}}_{1}$:

Real Roots: $(n, n+1)$ and $(n+1, n)$ for $n \geq 0$
Isotropic Roots: (n, n) for $n \geq 1$.
In particular, $\delta=(1,1)$ is the unique isotropic Schur root.
$\mathcal{D}((0,1))$ is generated by $(1,2)$ and $(-1,-2)$
$\mathcal{D}((1,0))$ is generated by $(0,1)$ and $(0,-1)$
For $n \geq 1, \mathcal{D}((n, n+1))$ is generated by $(n+1, n+2)$, and $\mathcal{D}((n+1, n))$ is generated by $(n, n-1)$.
Lastly, $\mathcal{D}(\delta)$ is generated by δ.

Example

Example

Rays extending through lattice points of $y=x+1$ and $y=x-1$

Example

Two weights α_{1} and α_{2} are GIT equivalent if and only if they are on the same collection of rays.

Example

In this case, since the intersection of any two rays is $(0,0)$, we have that α_{1}, α_{2} are GIT-equivalent if they are

- both $=(0,0)$
- both in the same ray, i.e., $\alpha_{1}=\lambda \alpha_{2}$ for some $\lambda \in \mathbb{Q}$

Further Questions

- How can we get our hands on these maximal GIT-cones of Schur roots for wild quivers?
- Would a similar result hold, using similar techniques, for quivers with relations?

Example

Let $Q=\tilde{\mathbb{A}}_{2}$:

Example

$$
\text { Let } Q=\tilde{\mathbb{A}}_{2} \text { : }
$$

We want to give an idea of the cones in \mathcal{I}. Recall that

$$
\mathcal{I}=\left\{\mathcal{C}(\delta)_{\alpha_{l}}\right\}_{l \in R} \cup\{\mathcal{D}(\beta)\}_{\beta}
$$

where the union is over all real Schur roots β.

Example

Starting with the dimension vectors of the projective and injective indecomposables, and applying the A-R translate, we get infinitely many real Schur roots:

Example

Starting with the dimension vectors of the projective and injective indecomposables, and applying the A-R translate, we get infinitely many real Schur roots:

$$
\begin{array}{llllllll}
\underline{\operatorname{dim}} P_{0}=(1,0,1) & \xrightarrow{\tau^{-}} & (2,2,3) & \xrightarrow{\tau^{-}} & (4,3,4) & \xrightarrow{\tau^{-}} & (5,5,6) & \xrightarrow{\tau^{-}} \cdots \\
\underline{\operatorname{dim}} P_{1}=(1,1,2) & \xrightarrow{\tau^{-}} & (3,2,3) & \xrightarrow{\tau^{-}} & (4,4,5) & \xrightarrow{\tau^{-}} & (6,5,6) & \xrightarrow{\tau^{-}} \cdots \\
\underline{\operatorname{dim}} P_{2}=(0,0,1) & \xrightarrow{\tau^{-}} & (2,1,2) & \xrightarrow{\tau^{-}} & (3,3,4) & \xrightarrow{\tau^{-}} & (5,4,5) & \xrightarrow{\tau^{-}} \cdots \\
\underline{\operatorname{dim}} I_{0}=(1,1,0) & \xrightarrow{\tau} & (2,3,2) & \xrightarrow{\tau} & (4,4,3) & \xrightarrow{\tau} & (5,6,5) & \xrightarrow{\tau^{-}} \cdots \\
\underline{\operatorname{dim}} 1_{1}=(0,1,0) & \xrightarrow{\tau} & (2,2,1) & \xrightarrow{\tau} & (3,4,3) & \xrightarrow{\tau} & (5,5,4) & \xrightarrow{\tau^{-}} \cdots \\
\underline{\operatorname{dim}} I_{2}=(1,2,1) & \xrightarrow{\tau} & (3,3,2) & \xrightarrow{\tau} & (4,5,4) & \xrightarrow{\tau} & (6,6,5) & \xrightarrow{\tau^{-}} \cdots
\end{array}
$$

Example

Starting with the dimension vectors of the projective and injective indecomposables, and applying the A-R translate, we get infinitely many real Schur roots:

$$
\begin{array}{llllllll}
\underline{\operatorname{dim}} P_{0}=(1,0,1) & \xrightarrow{\tau^{-}} & (2,2,3) & \xrightarrow{\tau^{-}} & (4,3,4) & \xrightarrow{\tau^{-}} & (5,5,6) & \xrightarrow{\tau^{-}} \cdots \\
\underline{\operatorname{dim}} P_{1}=(1,1,2) & \xrightarrow{\tau^{-}} & (3,2,3) & \xrightarrow{\tau^{-}} & (4,4,5) & \xrightarrow{\tau^{-}} & (6,5,6) & \xrightarrow{\tau^{-}} \cdots \\
\underline{\operatorname{dim}} P_{2}=(0,0,1) & \xrightarrow{\tau^{-}} & (2,1,2) & \xrightarrow{\tau^{-}} & (3,3,4) & \xrightarrow{\tau^{-}} & (5,4,5) & \xrightarrow{\tau^{-}} \cdots \\
\underline{\operatorname{dim}} I_{0}=(1,1,0) & \xrightarrow{\tau} & (2,3,2) & \xrightarrow{\tau} & (4,4,3) & \xrightarrow{\tau} & (5,6,5) & \xrightarrow{\tau^{-}} \cdots \\
\underline{\operatorname{dim}} 1_{1}=(0,1,0) & \xrightarrow{\tau} & (2,2,1) & \xrightarrow{\tau} & (3,4,3) & \xrightarrow{\tau} & (5,5,4) & \xrightarrow{\tau^{-}} \cdots \\
\underline{\operatorname{dim}} I_{2}=(1,2,1) & \xrightarrow{\tau} & (3,3,2) & \xrightarrow{\tau} & (4,5,4) & \xrightarrow{\tau} & (6,6,5) & \xrightarrow{\tau^{-}} \cdots
\end{array}
$$

Each one of these real Schur roots will correspond to a $\mathcal{D}(\beta) \in \mathcal{I}$.

Example

For example, if we take
$\beta=(0,0,1)$, we have $\mathcal{D}(\beta)$ is
generated by
$-\operatorname{dim} P_{0}=(-1,0,-1)$,
$-\underline{\operatorname{dim}} P_{1}=(-1,-1,-2)$ and
$(1,0,1)$, which is $-\langle-, \beta\rangle$-stable.

Example

For example, if we take $\beta=(0,0,1)$, we have $\mathcal{D}(\beta)$ is generated by
$-\underline{\operatorname{dim}} P_{0}=(-1,0,-1)$,
$-\underline{\operatorname{dim}} P_{1}=(-1,-1,-2)$ and
$(1,0,1)$, which is $-\langle-, \beta\rangle$-stable.
Thus, $\mathcal{D}(\beta)$ looks like:

Example

If we take $\beta=(1,1,2)$, which is sincere, we have $\mathcal{D}(\beta)$ is generated by $(0,1,1)$ and $(2,1,2)$ which are both $-\langle-, \beta\rangle$-stable.

Example

If we take $\beta=(1,1,2)$, which is sincere, we have $\mathcal{D}(\beta)$ is generated by $(0,1,1)$ and $(2,1,2)$ which are both $-\langle-, \beta\rangle$-stable.

Thus, $\mathcal{D}(\beta)$ looks like:

Example

Now, turning to the regular representations, we have $\delta=(1,1,1)$.

Example

Now, turning to the regular representations, we have $\delta=(1,1,1)$. If $\beta=(x, y, z)$ is quasi-simple, it must satisfy:

$$
\{\langle\delta, \beta\rangle=y-z=0
$$

Example

Now, turning to the regular representations, we have $\delta=(1,1,1)$. If $\beta=(x, y, z)$ is quasi-simple, it must satisfy:

$$
\left\{\begin{array}{c}
\langle\delta, \beta\rangle=y-z=0 \\
\langle\beta, \beta\rangle=x^{2}+y^{2}+z^{2}-x y-x z-y z=1
\end{array}\right.
$$

Example

Now, turning to the regular representations, we have $\delta=(1,1,1)$. If $\beta=(x, y, z)$ is quasi-simple, it must satisfy:

$$
\left\{\begin{array}{c}
\langle\delta, \beta\rangle=y-z=0 \\
\langle\beta, \beta\rangle=x^{2}+y^{2}-2 x y=1
\end{array}\right.
$$

Example

Now, turning to the regular representations, we have $\delta=(1,1,1)$. If $\beta=(x, y, z)$ is quasi-simple, it must satisfy:

$$
\left\{\begin{array}{c}
\langle\delta, \beta\rangle=y-z=0 \\
\langle\beta, \beta\rangle=x^{2}+y^{2}-2 x y=1 \\
\beta \leq \delta, \text { i.e., } x \leq 1, y \leq 1, z \leq 1
\end{array}\right.
$$

Example

Now, turning to the regular representations, we have $\delta=(1,1,1)$. If $\beta=(x, y, z)$ is quasi-simple, it must satisfy:

$$
\left\{\begin{array}{c}
\langle\delta, \beta\rangle=y-z=0 \\
\langle\beta, \beta\rangle=x^{2}+y^{2}-2 x y=1 \\
\beta \leq \delta, \text { i.e., } x \leq 1, y \leq 1, z \leq 1
\end{array}\right.
$$

So, the only quasi-simples are $(0,1,1)$ and $(1,0,0)$. That is, we have a single non-homogeneous tube in the regular component of the A-R quiver, and it has period 2.

Example

Now, turning to the regular representations, we have $\delta=(1,1,1)$. If $\beta=(x, y, z)$ is quasi-simple, it must satisfy:

$$
\left\{\begin{array}{c}
\langle\delta, \beta\rangle=y-z=0 \\
\langle\beta, \beta\rangle=x^{2}+y^{2}-2 x y=1 \\
\beta \leq \delta, \text { i.e., } x \leq 1, y \leq 1, z \leq 1
\end{array}\right.
$$

So, the only quasi-simples are $(0,1,1)$ and $(1,0,0)$. That is, we have a single non-homogeneous tube in the regular component of the $A-R$ quiver, and it has period 2.
Now, $\beta_{11}=(0,1,1)$ and $\beta_{12}=(1,0,0)$ are themselves real Schur roots, and so $\mathcal{D}\left(\beta_{11}\right)$ and $\mathcal{D}\left(\beta_{12}\right)$ are in \mathcal{I}.

Example

Lastly, we need the $C(\delta)_{\alpha_{l}}$'s.

Example

Lastly, we need the $C(\delta)_{\alpha_{1}}$'s.
For $I=(1)$, we have
$\alpha_{I}=\delta+\beta_{12}=(2,1,1)$ and
$C(\delta)_{\alpha,}$ is generated, as a cone, by ($1,1,1$) and ($1,0,0$).

Example

Lastly, we need the $C(\delta)_{\alpha_{l}}$'s.
For $I=(1)$, we have
$\alpha_{I}=\delta+\beta_{12}=(2,1,1)$ and
$C(\delta)_{\alpha_{l}}$ is generated, as a cone, by $(1,1,1)$ and $(1,0,0)$.

For $I=(2)$, we have
$\alpha_{I}=\delta+\beta_{11}=(1,2,2)$ and
$C(\delta)_{\alpha,}$ is generated, as a cone,
by $(1,1,1)$ and $(0,1,1)$.

Example

Lastly, we need the $C(\delta)_{\alpha_{l}}$'s.
For $I=(1)$, we have
$\alpha_{I}=\delta+\beta_{12}=(2,1,1)$ and $C(\delta)_{\alpha,}$ is generated, as a cone, by ($1,1,1$) and ($1,0,0$).

For $I=(2)$, we have $\alpha_{I}=\delta+\beta_{11}=(1,2,2)$ and $C(\delta)_{\alpha,}$ is generated, as a cone, by $(1,1,1)$ and $(0,1,1)$.

[Animation with many of the cones from \mathcal{I}]

