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Notation

▸ Q = (Q0,Q1, t,h) is a quiver

▸ K = algebraically closed field of characteristic 0
▸ V = a representation of the quiver Q

▸ V (i) is the K -vector space at vertex i
▸ V (a) is the K -linear map along arrow a.
▸ dimV = the dimension vector of V .

▸ rep(Q) is the category of finite dimensional quiver
representations.
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Euler Inner Product and Semi-stability

Given a quiver Q with vertex set Qo and arrow set Q1, we define
the Euler inner product of two vectors α and β in ZQ0 to be

⟨α,β⟩ = ∑
i∈Qo

α(i)β(i) − ∑
a∈Q1

α(ta)β(ha)

From now on, assume that Q is a connected acyclic quiver.

Let α ∈ QQ0 .
A representation V ∈ rep(Q) is said to be ⟨α,−⟩-semi-stable if:

⟨α,dimV ⟩ = 0 and ⟨α,dimV ′⟩ ≤ 0

for all subrepresentations V ′ ≤ V .

Likewise, it is ⟨α,−⟩-stable if the inequality is strict for proper,
non-trivial subrepresentations.
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Schur Representations and Generic Dimension Vectors

Recall that a representation V is called Schur if
HomQ(V ,V ) = K .

We say a dimension vector β is a Schur root if there exists a
β-dimensional Schur representation.

We say that β′ ↪ β if every β-dimensional representation has a
subrepresentation of dimension β′.
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Semi-Stability

rep(Q)ss⟨α,−⟩ is the full subcategory of rep(Q) whose objects are

⟨α,−⟩-semi-stable.

We say that β is ⟨α,−⟩-(semi)-stable if there exists a
β-dimensional, ⟨α,−⟩-(semi)-stable representation. This is
equivalent to saying

⟨α,β⟩ = 0 and ⟨α,β′⟩ ≤ 0 for all β′ ↪ β

And respectively, β is ⟨α,−⟩-stable if the second inequality is strict
for β′ ≠ 0, β.
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The cone of effective weights

The cone of effective weights for a dimension vector β:

D(β) = {α ∈ QQo ∣⟨α,β⟩ = 0, ⟨α,β′⟩ ≤ 0, β′ ↪ β}

Theorem (Schofield)

β is a Schur root if and only if
D(β)○ = {α ∈ QQ0 ∣⟨α,β⟩ = 0, ⟨α,β′⟩ < 0 ∀ β′ ↪ β,β ≠ 0, β} is
non-empty if and only if β is ⟨β,−⟩ − ⟨−, β⟩-stable.
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Big Question

Two rational vectors α1, α2 ∈ QQ0 , are said to be GIT-equivalent
(or ss-equivalent) if:

rep(Q)ss⟨α1,−⟩ = rep(Q)ss⟨α2,−⟩

Main Question: Find necessary and sufficient conditions for α1 and
α2 to be GIT-equivalent.

Colin Ingalls, Charles Paquette, and Hugh Thomas gave a
characterization in the case that Q is tame, which was published in
2015. Their work was motivated by studying what subcategories of
rep(Q) arise as semi-stable-subcategories, with an eye towards
forming a lattice of subcategories.
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A tiny bit of AR Theory for tame path algebras

We can build the Auslander-Reiten quiver, Γ, of the path algebra
KQ.

▸ Each indecomposable KQ-module corresponds to a vertex in Γ

▸ All projective indecomposables lie in the same connected
component, and all indecomposables in that component
(called preprojectives) are exceptional (i.e., their dimension
vectors are real Schur roots)

▸ Similarly for injectives/preinjectives
▸ Remaining indecomposables occur in tubes

▸ Homogeneous tubes (infinitely many)
▸ Finitely many non-homogeneous tubes
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Non-Homogeneous tubes

Now for example, a rank 3 tube looks like:

β11β12β13β11

β12
β11

β13
β12

β11
β13

β11
β12
β13

β12
β13
β11

β13
β11
β12

β11
β12
β13

⋮ ↑ Not Schur

↓ Schur

τ−τ−τ−

τ−τ−

τ−τ−τ− δ-dimensional, Schur



Previous work on the tame case

IPT did the following:

▸ Label the non-homogeneous regular tubes in the A-R quiver
1, . . . ,N, and let the period of the i th tube be ri .

▸ Let βi ,j be the j th quasi-simple root from the i th tube, where
1 ≤ j ≤ ri .

▸ Set I to be the multi-index (a1, . . . , aN), where 1 ≤ ai ≤ ri , and
R to be the set of all permissible such multi-indices.

▸ Define the cone CI to be the rational convex polyhedral cone
generated by δ, together with βi ,j , except for βiai .
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Previous work on the tame case

Define J = {CI}I∈R ∪ {D(β)}β, where β is a real Schur root. Set
Jα = {C ∈ J ∣α ∈ C}.

Theorem (Ingalls, Paquette, Thomas)

For α1, α2 ∈ ZQ0 , we have that α1 and α2 are GIT equivalent if and
only if Jα1 = Jα2 .
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The GIT-cone

Let Q be any acyclic quiver.

The semi-stable locus of α with respect to β is:

rep(Q, β)ss⟨α,−⟩
The GIT-cone of α with respect to β:

C(β)α = {α′ ∈ D(β)∣ rep(Q, β)ss⟨α,−⟩ ⊆ rep(Q, β)ss⟨α′,−⟩}

This consists of all effective weights “weaker” than α.
The GIT-fan associated to (Q, β) is:

F(β) = {C(β)α∣α ∈ D(β)} ∪ {0}
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A few remarks about fans

A fan is finite a collection of (rational convex polyhedral) cones
satisfying some additional properties. It is said to be pure of
dimension n if all cones that are maximal with respect to inclusion
are of dimension n.

Theorem

F(β) is a finite fan cover of D(β), and if β is a Schur root, then
F(β) is a pure fan of dimension ∣Q0∣ − 1.

A very useful property of pure fans for our result is the following:

(Keicher, 2012) Let Σ ⊆ Qn be a pure n-dimensional fan with
convex support ∣Σ∣, and let τ ∈ Σ be such that τ ∩ ∣Σ∣○ ≠ ∅. Then
τ is the intersection over all σ ∈ Σ(m) satisfying τ ⪯ σ.
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Main Theorem

Set

I = {C(β)α∣β is a Schur root and C(β)α is maximal}

Iα = {C ∈ I ∣α ∈ C}

Theorem (Theorem 1)

Let Q be a connected, acyclic quiver. For α1, α2 ∈ QQ0 , α1 ∼GIT α2

if and only if Iα1 = Iα2

That is, we have a collection of cones parametrized by Schur roots
which characterizes GIT-equivalence classes.
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Idea of Proof

Assume Iα1 = Iα2

If β is ⟨α1,−⟩-stable, then α1 ∈ D(β)○, and of course α1 ∈ C(β)α1 .
We can apply Keicher’s result to conclude that C(β)α1 is an
intersection of all maximal cones of which it is a face.
By the assumption, any such maximal cone contains α2 as well.
So, α2 ∈ C(β)α1 . Similarly, α1 ∈ C(β)α2 .
Now, if β is arbitrary, use a JH-filtration to break it into a sum of
⟨α1,−⟩-stable factors.
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The tame case

If Q is tame, the collection of cones I is exactly the collection J
defined by IPT.

Precisely, CI is a maximal GIT-cone, namely C(δ)αI
where

αI = δ +∑j≠ai ∑
N
i=1 βij

Main ingredients in proof:

▸ Realize CI as the orbit cone of a representation: Ω(ZI ), where
ZI is a direct sum of Zi , where Zi is the unique δ dimensional
representation with regular socle of dimension βiai .

▸ Show that the Zi ’s and the homogeneous δ-dimensional
representations are the only δ-dimensional representations
which are polystable with respect to the weight
αI = δ +∑j≠ai ∑

N
i=1 βij

▸ Invoke a result that C(β)α = ⋂Ω(W ) (Chindris, “On GIT
Fans for Quivers”)
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Example

Let Q = Ã1:

●1 ●2

Real Roots: (n,n + 1) and (n + 1,n) for n ≥ 0
Isotropic Roots: (n,n) for n ≥ 1.
In particular, δ = (1,1) is the unique isotropic Schur root.
D((0,1)) is generated by (1,2) and (−1,−2)
D((1,0)) is generated by (0,1) and (0,−1)
For n ≥ 1, D((n,n + 1)) is generated by (n + 1,n + 2), and
D((n + 1,n)) is generated by (n,n − 1).
Lastly, D(δ) is generated by δ.
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points of y = x + 1
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Example

Two weights α1

and α2 are GIT
equivalent if and
only if they are on
the same collection
of rays.



Example

In this case, since
the intersection of
any two rays is
(0,0), we have that
α1, α2 are
GIT-equivalent if
they are

▸ both = (0,0)
▸ both in the

same ray, i.e.,
α1 = λα2 for
some λ ∈ Q



Further Questions

▸ How can we get our hands on these maximal GIT-cones of
Schur roots for wild quivers?

▸ Would a similar result hold, using similar techniques, for
quivers with relations?



Example

Let Q = Ã2:

●0

●1 ●2

We want to give an idea of the cones in I. Recall that

I = {C(δ)αI
}I∈R ∪ {D(β)}β

where the union is over all real Schur roots β.
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●0

●1 ●2

We want to give an idea of the cones in I. Recall that

I = {C(δ)αI
}I∈R ∪ {D(β)}β

where the union is over all real Schur roots β.



Example

Starting with the dimension vectors of the projective and injective
indecomposables, and applying the A-R translate, we get infinitely
many real Schur roots:

dimP0 = (1,0,1)
τ−Ð→ (2,2,3)

τ−Ð→ (4,3,4)
τ−Ð→ (5,5,6)

τ−Ð→ ⋯
dimP1 = (1,1,2)

τ−Ð→ (3,2,3)
τ−Ð→ (4,4,5)

τ−Ð→ (6,5,6)
τ−Ð→ ⋯

dimP2 = (0,0,1)
τ−Ð→ (2,1,2)

τ−Ð→ (3,3,4)
τ−Ð→ (5,4,5)

τ−Ð→ ⋯
dimI0 = (1,1,0)

τÐ→ (2,3,2)
τÐ→ (4,4,3)

τÐ→ (5,6,5)
τ−Ð→ ⋯

dimI1 = (0,1,0)
τÐ→ (2,2,1)

τÐ→ (3,4,3)
τÐ→ (5,5,4)

τ−Ð→ ⋯
dimI2 = (1,2,1)

τÐ→ (3,3,2)
τÐ→ (4,5,4)

τÐ→ (6,6,5)
τ−Ð→ ⋯

Each one of these real Schur roots will correspond to a D(β) ∈ I.
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Example

For example, if we take
β = (0,0,1), we have D(β) is
generated by
−dimP0 = (−1,0,−1),
−dimP1 = (−1,−1,−2) and
(1,0,1), which is −⟨−, β⟩-stable.

Thus, D(β) looks like:
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Example

If we take β = (1,1,2), which is
sincere, we have D(β) is
generated by (0,1,1) and
(2,1,2) which are both
−⟨−, β⟩-stable.

Thus, D(β) looks like:
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If we take β = (1,1,2), which is
sincere, we have D(β) is
generated by (0,1,1) and
(2,1,2) which are both
−⟨−, β⟩-stable.
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Now, turning to the regular representations, we have δ = (1,1,1).

If β = (x , y , z) is quasi-simple, it must satisfy:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⟨δ, β⟩ = y − z = 0
⟨β,β⟩ = x2 + y2 + z2 − xy − xz − yz = 1

β ≤ δ, i.e., x ≤ 1, y ≤ 1, z ≤ 1

So, the only quasi-simples are (0,1,1) and (1,0,0). That is, we
have a single non-homogeneous tube in the regular component of
the A-R quiver, and it has period 2.
Now, β11 = (0,1,1) and β12 = (1,0,0) are themselves real Schur
roots, and so D(β11) and D(β12) are in I.
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Example

Lastly, we need the C(δ)αI
’s.

For I = (1), we have
αI = δ + β12 = (2,1,1) and
C(δ)αI

is generated, as a cone,
by (1,1,1) and (1,0,0).

For I = (2), we have
αI = δ + β11 = (1,2,2) and
C(δ)αI

is generated, as a cone,
by (1,1,1) and (0,1,1).

[Animation with many of the cones from I]
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