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Notation.

k = a field of characteristic p, algebraically closed.

G = a finite group.

All kG -modules are finitely generated.

For M a kG -module, let M∗ = Homk(M, k), the k-dual.

Recall that Homk(M,N) ∼= M∗ ⊗ N

Let Tr : M∗ ⊗M → k be the trace map. Note that if p does not
divide the dimension of M, then Tr is split by the map

k // M∗ ⊗M ∼= Homk(M,M)

that sends 1 ∈ k to Id ∈ HomkG (M,M)

Jon F. Carlson University of Georgia Nilpotence and generation in the stable module categor



Basic results.

Theorem: (Benson-Carlson, 1984) Assume that k is algebraically
closed. Suppose that M and N are indecomposable modules and
that k is a direct summand of M ⊗ N. Then

1 Dim(M) is not divisible by p,

2 N ∼= M∗,

3 the multiplicity of k as a direct summand of M⊗N is one, and

4 the trace map Tr : M ⊗M∗ → k is split.
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Basic results.

Theorem: (Benson-Carlson, 1984) Assume that k is algebraically
closed. Suppose that M and N are indecomposable modules and
that k is a direct summand of M ⊗ N. Then

1 Dim(M) is not divisible by p,

2 N ∼= M∗,

3 the multiplicity of k as a direct summand of M⊗N is one, and

4 the trace map Tr : M ⊗M∗ → k is split.

Corollary Suppose that M and N are kG -modules such that M is
indecomposable and has dimension divisible by p. Then any direct
summand of M ⊗ N has dimension divisible by p.
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The Stable Category.

The stable category stmod(kG ) has

objects: Finitely generated kG -modules

and morphisms (for M and N objects):

Hom
kG

(M,N) =
HomkG (M,N)

PHomkG (M,N)

where PHom means homomorphisms that factor through
projectives modules.

This is a tensor triangulated category. The triangles correspond to
exact sequences. The shift functor is Ω−1 where Ω−1(M) is the
cokernel of the injective hull M → IM .

Remember that projective modules are injective modules and vice

versa.
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Generation

We say that a kG -module N is generated in n steps from a
collection of modules {Mα} if there is a triangle

N1 → N2 → N ⊕ Z

in stmod(kG ), for some Z , where N1 is generated in n − 1 steps
from {Mα} and N2 is a direct sum of shifts of modules Mα in the
collection. To begin the induction, N is generated in one step from
the {Mα} if it is stably isomorphic to a summand of a direct sum
of shifts of the modules Mα.
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Generation

Note that if G is a p-group then k generates stmod(kG ) in at
most ℓ = Loewy length of kG steps.

(Radi (M)/Radi+1(M) is a sum of copies of k .)

We say that a kG -module N is tensor generated in n steps from a
collection of modules {Mα} if it is generated in n steps by the
collection of modules {Mα ⊗ X} with Mα in the original collection
and X arbitrary.
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Generation

Lemma: If N is tensor generated in n steps from {Mα} then so
is every module of the form N ⊗ Y .

The tensor M-generation number is the number of steps it takes to
generate k from modules of the form M ⊗ X (or infinity if k
cannot be generated from such modules).

Given a module M, the modules that can be generated from M

form a thick subcategory of stmod(kG ).
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Generating k

Suppose that M is a finitely generated kG -module. Then the ring
Ext∗kG (M,M) is a finitely generated module over the cohomology
ring H∗(G , k) ∼= Ext∗kG (k , k). (Take an extension of k by k , tensor
it with M, and get an extension of M by M.)

Let J(M) be the annihilator of Ext∗kG (M,M) in H∗(G , k).

Let VG (k) = Proj(H∗(G , k)) be the spectrum of homogeneous
prime ideals in H∗(G , k).

Let VG (M) be the variety of J(M), the set of all prime ideals that
contain J(M).
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Generating k

Suppose that M is a finitely generated kG -module. Then the ring
Ext∗kG (M,M) is a finitely generated module over the cohomology
ring H∗(G , k) ∼= Ext∗kG (k , k). (Take an extension of k by k , tensor
it with M, and get an extension of M by M.)

Let J(M) be the annihilator of Ext∗kG (M,M) in H∗(G , k).

Let VG (k) = Proj(H∗(G , k)) be the spectrum of homogeneous
prime ideals in H∗(G , k).

Let VG (M) be the variety of J(M), the set of all prime ideals that
contain J(M).

Theorem: (Benson-C-Rickard) A thick subcategory of
stmod(kG ) is determined entirely by the support varieties of its
objects.

So, if VG (M) = VG (k), then M generates k .
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Tensor nilpotence

Let M and N be kG -modules. We say that a map f : N → M is
tensor nilpotent if some tensor power f ⊗n : N⊗n → M⊗n is null
(factors through a projective module). The degree of tensor

nilpotence is the smallest such n.

Proposition f : M → N is tensor nilpotent if and only if its
restriction to every elementary abelian p-subgroup is tensor
nilpotent.
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Elementary abelian subgroups

Let E = 〈g1, . . . , gr 〉 ∼= (Z/p)r be an elementary abelian p-group
of rank r . We set Xi = gi − 1 ∈ kE , for 1 ≤ i ≤ r . This allows us
to regard kE as a truncated polynomial ring,

kE = k[X1, . . . ,Xr ]/(X
p
1 , . . . ,X

p
r ).

If 0 6= α = (λ1, . . . , λr ) ∈ Ar (k), we set

Xα = λ1X1 + · · ·+ λrXr ∈ kE .

Identifying kE with the restricted enveloping algebra of a
commutative Lie algebra, we get a Hopf algebra structure:

∆(Xα) = Xα ⊗ 1 + 1⊗ Xα.
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Elementary abelian subgroups

Let E = 〈g1, . . . , gr 〉 ∼= (Z/p)r be an elementary abelian p-group
of rank r . We set Xi = gi − 1 ∈ kE , for 1 ≤ i ≤ r . This allows us
to regard kE as a truncated polynomial ring,

kE = k[X1, . . . ,Xr ]/(X
p
1 , . . . ,X

p
r ).

If 0 6= α = (λ1, . . . , λr ) ∈ Ar (k), we set

Xα = λ1X1 + · · ·+ λrXr ∈ kE .

Identifying kE with the restricted enveloping algebra of a
commutative Lie algebra, we get a Hopf algebra structure:

∆(Xα) = Xα ⊗ 1 + 1⊗ Xα.

Theorem: Endow kE with the Lie theoretic Hopf algebra
structure. Then a map f : N → M of finitely generated
kE -modules is tensor nilpotent if and only if its restriction to every
k[Xα]/(X

p
α) is tensor nilpotent.
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Hopf structure

But unfortunately we can prove the following.

Proposition: Suppose that E is elementary abelian. The tensor
nilpotence of a map f : M → N depends on the Hopf structure.
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Hopf structure

But unfortunately we can prove the following.

Proposition: Suppose that E is elementary abelian. The tensor
nilpotence of a map f : M → N depends on the Hopf structure.

And even worse:

Proposition: In general, tensor nilpotent maps can have
arbitrarily large degree.
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Ghosts

Let M be a kG -module. We say that a map of kG -modules

f : X → Y is an M-ghost if f∗ : Êxt
∗

kG (M,X ) → Êxt
∗

kG (M,Y ) is
the zero map.

The map f : X → Y is a tensor-M-ghost if it is an M ⊗ U-ghost
for every kG -module U. This is equivalent to the statement that
IdM ⊗f : M ⊗ X → M ⊗ Y is null (factors through a projective).

A tensor-k-ghost is null.

Jon F. Carlson University of Georgia Nilpotence and generation in the stable module categor



More ghosts

Lemma: Let ι : k → M ⊗M∗ be the adjoint to the identity map
M → M, and complete to a triangle

N
f

// k
ι

// M ⊗M∗ // Ω−1(N)

in stmod(kG ). Then f : N → k is a tensor M-ghost. This map is
null if and only if the dimension of M is not divisible by p.

The (tensor) M-ghost number is the smallest n such that every
composite of n (tensor) M-ghosts is null.
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Connections

Theorem: Given a kG -module M, form the triangle

N
f
−→ k → M ⊗M∗ in stmod(kG ) as above. Then the following

statements are equivalent.
(i) The tensor M-generation number is at most n.
(ii) The map f ⊗n is null.
(iii) The tensor M-ghost number is at most n.
These statements hold for some (finite) n ≥ 1 if and only if the
support variety VG (M) is equal to VG (k).
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Connections

Theorem: Given a kG -module M, form the triangle

N
f
−→ k → M ⊗M∗ in stmod(kG ) as above. Then the following

statements are equivalent.
(i) The tensor M-generation number is at most n.
(ii) The map f ⊗n is null.
(iii) The tensor M-ghost number is at most n.
These statements hold for some (finite) n ≥ 1 if and only if the
support variety VG (M) is equal to VG (k).

Question: For kG -modules M with VG (M) = VG (k), is there a
bound on the tensor M-generation number that depends only on G

and not on M?
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Strongly nilpotent

Let E = 〈g1, . . . , gr 〉 ∼= (Z/p)r be an elementary abelian p-group
of rank r , and let f : M → k be a kE -module homomorphism. We
say that f is strongly nilpotent if, when k is regarded as
kE/Rad(kE ), the map f factors through to a map from
kE/Rad2(kE ) to M, as in the following diagram:

M
f

//

��

k

kE/Rad2(kE )

99
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Strongly nilpotent

Let E = 〈g1, . . . , gr 〉 ∼= (Z/p)r be an elementary abelian p-group
of rank r , and let f : M → k be a kE -module homomorphism. We
say that f is strongly nilpotent if, when k is regarded as
kE/Rad(kE ), the map f factors through to a map from
kE/Rad2(kE ) to M, as in the following diagram:

M
f

//

��

k

kE/Rad2(kE )

99

Proposition: Let f : M → k be a map of kE -modules. If f is
strongly nilpotent, then f is tensor nilpotent. More precisely,
f ⊗r(p−1) is null.

Strong nilpotence does not depend on the Hopf structure.
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Other connections

A bound on generation numbers for modules M with
VG (M) = VG (k) would follow from the statement that for any

such M, the map f in the triangle N
f
−→ k → M ⊗M∗ is strongly

nilpotent.

The statement about generation for an arbitrary G reduces to the
same statement for elementary abelian subgroups.
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Other connections

A bound on generation numbers for modules M with
VG (M) = VG (k) would follow from the statement that for any

such M, the map f in the triangle N
f
−→ k → M ⊗M∗ is strongly

nilpotent.

The statement about generation for an arbitrary G reduces to the
same statement for elementary abelian subgroups.

Theorem: Given a kE -module M, form the triangle

N
f
−→ k → M ⊗M∗ as usual. Then the following are equivalent:

(i) f is strongly nilpotent.
(ii) The trace map
TrM : Ext1kE (M,M) ∼= Ext1kE (k ,M

∗ ⊗M) → Ext1kE (k , k) is
surjective.
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