NILPOTENCE AND GENERATION IN THE STABLE MODULE CATEGORY

Jon F. Carlson University of Georgia

November 19, 2016

Columbia, MO

Joint work with Dave Benson

JON F. CARLSON UNIVERSITY OF GEORGIA NILPOTENCE AND GENERATION IN THE STABLE MODULE CATEGO

イロト イヨト イヨト

k = a field of characteristic p, algebraically closed.

G = a finite group.

All kG-modules are finitely generated.

For *M* a *kG*-module, let $M^* = \text{Hom}_k(M, k)$, the *k*-dual.

Recall that $\operatorname{Hom}_k(M, N) \cong M^* \otimes N$

Let $Tr: M^* \otimes M \to k$ be the trace map. Note that if p does not divide the dimension of M, then Tr is split by the map

$$k \longrightarrow M^* \otimes M \cong \operatorname{Hom}_k(M, M)$$

that sends $1 \in k$ to $Id \in Hom_{kG}(M, M)$

(本部) (本語) (本語) (二語)

Theorem: (Benson-Carlson, 1984) Assume that k is algebraically closed. Suppose that M and N are indecomposable modules and that k is a direct summand of $M \otimes N$. Then

• Dim(M) is not divisible by p,

$$N \cong M^*,$$

- **③** the multiplicity of k as a direct summand of $M \otimes N$ is one, and
- **()** the trace map $\operatorname{Tr} : M \otimes M^* \to k$ is split.

Theorem: (Benson-Carlson, 1984) Assume that k is algebraically closed. Suppose that M and N are indecomposable modules and that k is a direct summand of $M \otimes N$. Then

• Dim(M) is not divisible by p,

$$N \cong M^*,$$

- **③** the multiplicity of k as a direct summand of $M \otimes N$ is one, and
- **()** the trace map Tr : $M \otimes M^* \to k$ is split.

Corollary Suppose that M and N are kG-modules such that M is indecomposable and has dimension divisible by p. Then any direct summand of $M \otimes N$ has dimension divisible by p.

(本部) (本語) (本語) (二語

THE STABLE CATEGORY.

The stable category stmod(kG) has

objects: Finitely generated kG-modules

and morphisms (for *M* and *N* objects):

$$\underline{\operatorname{Hom}}_{kG}(M,N) = \frac{\operatorname{Hom}_{kG}(M,N)}{\operatorname{PHom}_{kG}(M,N)}$$

where PHom means homomorphisms that factor through projectives modules.

This is a *tensor* triangulated category. The triangles correspond to exact sequences. The shift functor is Ω^{-1} where $\Omega^{-1}(M)$ is the cokernel of the injective hull $M \to I_M$.

Remember that projective modules are injective modules and *vice versa*.

We say that a kG-module N is generated in n steps from a collection of modules $\{M_{\alpha}\}$ if there is a triangle

 $N_1 \rightarrow N_2 \rightarrow N \oplus Z$

in **stmod**(*kG*), for some *Z*, where N_1 is generated in n-1 steps from $\{M_{\alpha}\}$ and N_2 is a direct sum of shifts of modules M_{α} in the collection. To begin the induction, *N* is generated in one step from the $\{M_{\alpha}\}$ if it is stably isomorphic to a summand of a direct sum of shifts of the modules M_{α} .

(本部) (本語) (本語) (二語

Note that if G is a p-group then k generates stmod(kG) in at most $\ell = Loewy$ length of kG steps.

 $(\operatorname{Rad}^{i}(M)/\operatorname{Rad}^{i+1}(M)$ is a sum of copies of k.)

We say that a kG-module N is *tensor generated in n steps* from a collection of modules $\{M_{\alpha}\}$ if it is generated in *n* steps by the collection of modules $\{M_{\alpha} \otimes X\}$ with M_{α} in the original collection and X arbitrary.

- 4 緑 ト 4 日 ト 4 日 ト - 日

Lemma: If *N* is tensor generated in *n* steps from $\{M_{\alpha}\}$ then so is every module of the form $N \otimes Y$.

The *tensor M*-generation number is the number of steps it takes to generate k from modules of the form $M \otimes X$ (or infinity if k cannot be generated from such modules).

Given a module M, the modules that can be generated from M form a thick subcategory of **stmod**(kG).

GENERATING k

Suppose that M is a finitely generated kG-module. Then the ring $\operatorname{Ext}_{kG}^*(M, M)$ is a finitely generated module over the cohomology ring $\operatorname{H}^*(G, k) \cong \operatorname{Ext}_{kG}^*(k, k)$. (Take an extension of k by k, tensor it with M, and get an extension of M by M.)

Let J(M) be the annihilator of $\operatorname{Ext}_{kG}^*(M, M)$ in $\operatorname{H}^*(G, k)$.

Let $V_G(k) = \operatorname{Proj}(H^*(G, k))$ be the spectrum of homogeneous prime ideals in $H^*(G, k)$.

Let $V_G(M)$ be the variety of J(M), the set of all prime ideals that contain J(M).

・ロット 4 回 > 4 日 > ・ 日 ・ クタマ

GENERATING k

Suppose that M is a finitely generated kG-module. Then the ring $\operatorname{Ext}_{kG}^*(M, M)$ is a finitely generated module over the cohomology ring $\operatorname{H}^*(G, k) \cong \operatorname{Ext}_{kG}^*(k, k)$. (Take an extension of k by k, tensor it with M, and get an extension of M by M.)

Let J(M) be the annihilator of $\operatorname{Ext}_{kG}^*(M, M)$ in $\operatorname{H}^*(G, k)$.

Let $V_G(k) = \operatorname{Proj}(H^*(G, k))$ be the spectrum of homogeneous prime ideals in $H^*(G, k)$.

Let $V_G(M)$ be the variety of J(M), the set of all prime ideals that contain J(M).

Theorem: (Benson-C-Rickard) A thick subcategory of stmod(kG) is determined entirely by the support varieties of its objects.

So, if $V_G(M) = V_G(k)$, then M generates k.

Let *M* and *N* be *kG*-modules. We say that a map $f: N \to M$ is *tensor nilpotent* if some tensor power $f^{\otimes n}: N^{\otimes n} \to M^{\otimes n}$ is null (factors through a projective module). The *degree of tensor nilpotence* is the smallest such *n*.

Proposition $f: M \rightarrow N$ is tensor nilpotent if and only if its restriction to every elementary abelian *p*-subgroup is tensor nilpotent.

ELEMENTARY ABELIAN SUBGROUPS

Let $E = \langle g_1, \ldots, g_r \rangle \cong (\mathbb{Z}/p)^r$ be an elementary abelian *p*-group of rank *r*. We set $X_i = g_i - 1 \in kE$, for $1 \le i \le r$. This allows us to regard *kE* as a truncated polynomial ring,

$$kE = k[X_1,\ldots,X_r]/(X_1^p,\ldots,X_r^p).$$

If $0
eq lpha = (\lambda_1, \dots, \lambda_r) \in \mathbf{A}^r(k)$, we set

$$X_{\alpha} = \lambda_1 X_1 + \cdots + \lambda_r X_r \in kE.$$

Identifying kE with the restricted enveloping algebra of a commutative Lie algebra, we get a Hopf algebra structure:

$$\Delta(X_{lpha})=X_{lpha}\otimes 1+1\otimes X_{lpha}.$$

ELEMENTARY ABELIAN SUBGROUPS

Let $E = \langle g_1, \ldots, g_r \rangle \cong (\mathbb{Z}/p)^r$ be an elementary abelian *p*-group of rank *r*. We set $X_i = g_i - 1 \in kE$, for $1 \le i \le r$. This allows us to regard *kE* as a truncated polynomial ring,

$$kE = k[X_1,\ldots,X_r]/(X_1^p,\ldots,X_r^p).$$

If $0 \neq \alpha = (\lambda_1, \dots, \lambda_r) \in \mathbf{A}^r(k)$, we set $X_{\alpha} = \lambda_1 X_1 + \dots + \lambda_r X_r \in kE$.

Identifying kE with the restricted enveloping algebra of a commutative Lie algebra, we get a Hopf algebra structure:

$$\Delta(X_{lpha}) = X_{lpha} \otimes 1 + 1 \otimes X_{lpha}.$$

Theorem: Endow kE with the Lie theoretic Hopf algebra structure. Then a map $f: N \to M$ of finitely generated kE-modules is tensor nilpotent if and only if its restriction to every $k[X_{\alpha}]/(X_{\alpha}^{p})$ is tensor nilpotent.

JON F. CARLSON UNIVERSITY OF GEORGIA

NILPOTENCE AND GENERATION IN THE STABLE MODULE CATEGO

But unfortunately we can prove the following.

Proposition: Suppose that *E* is elementary abelian. The tensor nilpotence of a map $f: M \rightarrow N$ depends on the Hopf structure.

・ 戸 ト ・ ヨ ト ・ ヨ ト

But unfortunately we can prove the following.

Proposition: Suppose that *E* is elementary abelian. The tensor nilpotence of a map $f: M \rightarrow N$ depends on the Hopf structure.

And even worse:

Proposition: In general, tensor nilpotent maps can have arbitrarily large degree.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let M be a kG-module. We say that a map of kG-modules $f: X \to Y$ is an M-ghost if $f_*: \widehat{\operatorname{Ext}}_{kG}^*(M, X) \to \widehat{\operatorname{Ext}}_{kG}^*(M, Y)$ is the zero map.

The map $f: X \to Y$ is a tensor-*M*-ghost if it is an $M \otimes U$ -ghost for every *kG*-module *U*. This is equivalent to the statement that $Id_M \otimes f: M \otimes X \to M \otimes Y$ is null (factors through a projective).

A tensor-*k*-ghost is null.

Lemma: Let $\iota : k \to M \otimes M^*$ be the adjoint to the identity map $M \to M$, and complete to a triangle

$$N \xrightarrow{f} k \xrightarrow{\iota} M \otimes M^* \longrightarrow \Omega^{-1}(N)$$

in **stmod**(kG). Then $f : N \to k$ is a tensor *M*-ghost. This map is null if and only if the dimension of *M* is not divisible by *p*.

The (tensor) M-ghost number is the smallest n such that every composite of n (tensor) M-ghosts is null.

・ 戸 ト ・ 三 ト ・ 三 ト

Theorem: Given a kG-module M, form the triangle $N \xrightarrow{f} k \to M \otimes M^*$ in **stmod**(kG) as above. Then the following statements are equivalent.

(i) The tensor M-generation number is at most n.

(ii) The map $f^{\otimes n}$ is null.

(iii) The tensor *M*-ghost number is at most *n*.

These statements hold for some (finite) $n \ge 1$ if and only if the support variety $V_G(M)$ is equal to $V_G(k)$.

(1) マン・ション・

Theorem: Given a kG-module M, form the triangle $N \xrightarrow{f} k \to M \otimes M^*$ in **stmod**(kG) as above. Then the following statements are equivalent.

(i) The tensor M-generation number is at most n.

(ii) The map $f^{\otimes n}$ is null.

(iii) The tensor M-ghost number is at most n.

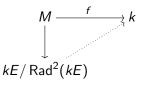
These statements hold for some (finite) $n \ge 1$ if and only if the support variety $V_G(M)$ is equal to $V_G(k)$.

Question: For kG-modules M with $V_G(M) = V_G(k)$, is there a bound on the tensor M-generation number that depends only on G and not on M?

白 医 不得 医 不良 医 不良 医二乙

STRONGLY NILPOTENT

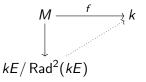
Let $E = \langle g_1, \ldots, g_r \rangle \cong (\mathbb{Z}/p)^r$ be an elementary abelian *p*-group of rank *r*, and let $f \colon M \to k$ be a *kE*-module homomorphism. We say that *f* is *strongly nilpotent* if, when *k* is regarded as *kE*/Rad(*kE*), the map *f* factors through to a map from *kE*/Rad²(*kE*) to *M*, as in the following diagram:



(本間) (本語) (本語) (語)

STRONGLY NILPOTENT

Let $E = \langle g_1, \ldots, g_r \rangle \cong (\mathbb{Z}/p)^r$ be an elementary abelian *p*-group of rank *r*, and let $f \colon M \to k$ be a *kE*-module homomorphism. We say that *f* is *strongly nilpotent* if, when *k* is regarded as *kE*/Rad(*kE*), the map *f* factors through to a map from *kE*/Rad²(*kE*) to *M*, as in the following diagram:



Proposition: Let $f: M \to k$ be a map of kE-modules. If f is strongly nilpotent, then f is tensor nilpotent. More precisely, $f^{\otimes r(p-1)}$ is null.

Strong nilpotence does not depend on the Hopf structure,

JON F. CARLSON UNIVERSITY OF GEORGIA

NILPOTENCE AND GENERATION IN THE STABLE MODULE CATEGO

OTHER CONNECTIONS

A bound on generation numbers for modules M with $V_G(M) = V_G(k)$ would follow from the statement that for any such M, the map f in the triangle $N \xrightarrow{f} k \to M \otimes M^*$ is strongly nilpotent.

The statement about generation for an arbitrary G reduces to the same statement for elementary abelian subgroups.

伺下 イヨト イヨト

OTHER CONNECTIONS

A bound on generation numbers for modules M with $V_G(M) = V_G(k)$ would follow from the statement that for any such M, the map f in the triangle $N \xrightarrow{f} k \to M \otimes M^*$ is strongly nilpotent.

The statement about generation for an arbitrary G reduces to the same statement for elementary abelian subgroups.

Theorem: Given a kE-module M, form the triangle $N \xrightarrow{f} k \to M \otimes M^*$ as usual. Then the following are equivalent: (i) f is strongly nilpotent. (ii) The trace map $\operatorname{Tr}_M : \operatorname{Ext}_{kE}^1(M, M) \cong \operatorname{Ext}_{kE}^1(k, M^* \otimes M) \to \operatorname{Ext}_{kE}^1(k, k)$ is surjective.

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶