Donaldson-Thomas invariants for A-type square product quivers

Justin Allman ${ }^{1}$
(Joint work with Richárd Rimányi ${ }^{2}$)
${ }^{1}$ US Naval Academy
${ }^{2}$ UNC Chapel Hill

4th Conference on Geometric Methods in Representation Theory University of Missouri, 19 November 2016

Quantum dilogarithm series and pentagon identity

Definition 1

For a variable z, the quantum dilogarithm series in $\mathbb{Q}\left(q^{1 / 2}\right)[[z]]$ is

$$
\mathbb{E}(z)=1+\sum_{n=1}^{\infty} \frac{(-z)^{n} q^{n^{2} / 2}}{\prod_{i=1}^{n}\left(1-q^{i}\right)} .
$$

Theorem (Pentagon identity)

In the algebra $\mathbb{Q}\left(q^{1 / 2}\right)\left[\left[y_{1}, y_{2}\right]\right] /\left(y_{2} y_{1}-q y_{1} y_{2}\right)$ we have

$$
\mathbb{E}\left(y_{1}\right) \mathbb{E}\left(y_{2}\right)=\mathbb{E}\left(y_{2}\right) \mathbb{E}\left(-q^{-1 / 2} y_{2} y_{1}\right) \mathbb{E}\left(y_{1}\right) .
$$

This identity is often credited to Schützenberger (1953) but appeared more or less in the form above in the work of Faddeev-Kashaev (1994) as a quantum mechanical generalization of a dilogarithm function defined first by Euler, and then refined by Rogers (1907).

We seek generalizations of this identity.

- Let $Q=\left(Q_{0}, Q_{1}\right)$ be a quiver with vertex set Q_{0} and arrow set Q_{1}.
- For $a \in Q_{1}$ let ta, ha $\in Q_{0}$ respectively denote its head and tail (target and source) vertex.
- For any dimension vector γ we have the representation space

$$
\mathbf{M}_{\gamma}=\bigoplus_{a \in Q_{1}} \operatorname{Hom}\left(\mathbb{C}^{\gamma(t a)}, \mathbb{C}^{\gamma(h a)}\right)
$$

with action of the algebraic group $\mathbf{G}_{\gamma}=\prod_{i \in Q_{0}} \mathrm{GL}\left(\mathbb{C}^{\gamma(i)}\right)$ by base-change at each vertex.

- For dimension vectors $\gamma_{1}, \gamma_{2} \in \mathbb{N}^{Q_{0}}$ let χ denote the Euler form:

$$
\chi\left(\gamma_{1}, \gamma_{2}\right)=\sum_{i \in Q_{0}} \gamma_{1}(i) \gamma_{2}(i)-\sum_{a \in Q_{1}} \gamma_{1}(t a) \gamma_{2}(h a) .
$$

- Let λ denote its opposite anti-symmetrization

$$
\lambda\left(\gamma_{1}, \gamma_{2}\right)=\chi\left(\gamma_{2}, \gamma_{1}\right)-\chi\left(\gamma_{1}, \gamma_{2}\right)
$$

Quantum algebra of Q

Let $q^{1 / 2}$ be an indeterminate and q denote its square. The quantum algebra \mathbb{A}_{Q} of the quiver is the $\mathbb{Q}\left(q^{1 / 2}\right)$-algebra

- generated by the symbols y_{γ}, one for each dimension vector γ;
- subject to the relation

$$
y_{\gamma_{1}+\gamma_{2}}=-q^{-\frac{1}{2} \lambda\left(\gamma_{1}, \gamma_{2}\right)} y_{\gamma_{1}} y_{\gamma_{2}} .
$$

Remark

The elements y_{γ} form a $\mathbb{Q}\left(q^{1 / 2}\right)$-vector space basis.
The elements $y_{\mathrm{e}_{i}}$ form a set of algebraic generators.
(Where \mathbf{e}_{i} is the dimension vector with 1 at the i-th vertex and zeroes elsewhere)
Observe we that the relation above also implies that

$$
y_{\gamma_{1}} y_{\gamma_{2}}=q^{\lambda\left(\gamma_{1}, \gamma_{2}\right)} y_{\gamma_{2}} y_{\gamma_{1}} .
$$

Example: A_{2}

Remark

Notice that

$$
\lambda\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right)=\#\{\text { arrows } i \rightarrow j\}-\#\{\text { arrows } j \rightarrow i\} .
$$

Consider the quiver $1 \longleftarrow 2$ and let $y_{\mathrm{e}_{i}}=y_{i}$. Then

$$
y_{2} y_{1}=q y_{1} y_{2} \quad y_{\mathbf{e}_{1}+\mathbf{e}_{2}}=-q^{-1 / 2} y_{2} y_{1}
$$

Thus the pentagon identity says that

$$
\mathbb{E}\left(y_{1}\right) \mathbb{E}\left(y_{2}\right)=\mathbb{E}\left(y_{2}\right) \mathbb{E}\left(y_{\mathbf{e}_{1}+\mathbf{e}_{2}}\right) \mathbb{E}\left(y_{1}\right) .
$$

The left-hand side gives an ordering of the simple roots of A_{2}; the right-hand side gives an ordering for the positive roots of A_{2}.

Generalizing the pentagon identity

Definition 2

A Dynkin quiver is an orientation of a type A, D, or E Dynkin diagram. By Gabriel's Theorem, these are exactly the representation finite quivers, i.e. for which there are only finitely many \mathbf{G}_{γ}-orbits in \mathbf{M}_{γ}.

- For each $i \in Q_{0}$, there is a simple root α_{i}, which is identified with the dimension vector \mathbf{e}_{i}.
- Since each positive root $\beta=\sum_{i} d_{i}^{\beta} \alpha_{i}$ for some positive integers d_{i}^{β}, these are also identified with dimension vectors.

Theorem (Reineke (2010), Rimányi (2013))

For Dynkin quivers Q there exist orderings on the simple and positive roots such that

$$
\prod_{\alpha \text { simple }} \mathbb{E}\left(y_{\alpha}\right)=\prod_{\beta \text { positive }}^{\hat{}} \mathbb{E}\left(y_{\beta}\right) .
$$

where " \lrcorner " indicates the products are taken in the specified orders.

Donaldson-Thomas invariant

Theorem (Reineke (2010), Rimányi (2013))

For Dynkin quivers Q there exist orderings on the simple and positive roots such that

$$
\prod_{\alpha \text { simple }}^{\vec{E}} \mathbb{E}\left(y_{\alpha}\right)=\prod_{\beta \text { positive }}^{\vec{~}} \mathbb{E}\left(y_{\beta}\right) .
$$

where the arrows indicate the products are taken in the specified orders.
The common value of both sides above is the Donaldson-Thomas invariant \mathbb{E}_{Q} of the quiver Q.
It is known that the identity above is a consequence of the Pentagon Identity.

The square product of two Dynkin quivers is formed by the process below: (Here we do the example $A_{3} \square D_{4}$)

- Assign alternating orientations to A_{3} and D_{4}, e.g.

- make a grid of vertices $A_{3} \times D_{4}$ (use matrix notation to name locations)
- reverse the arrows in the full sub-quivers $\{i\} \times D_{4}$ and $A_{3} \times\{j\}$ whenever i is a sink in A_{3} and j is a source in D_{4}.
- The result is the diagram of oriented squares:

- The " \circ " nodes are called odd, the " \bullet " nodes are called even.

Example: $A_{2} \square A_{2}$

- Begin with $(1 \leftarrow 2) \times(1 \rightarrow 2)$.
- For $u, v \in Q_{0}$, let $y_{\mathrm{e}_{u}}=y_{u}$;
- let $y_{\mathbf{e}_{u}+\mathbf{e}_{v}}=y_{u+v}$.

$$
(11) \longleftarrow(12)
$$

$(21) \longrightarrow(22)$

Theorem (Keller (2011,2013), A.-Rimányi (2016))

We have the following identity of quantum dilogarithm series

$$
\begin{aligned}
\mathbb{E}\left(y_{(12)}\right) & \mathbb{E}\left(y_{(21)}\right) \mathbb{E}\left(y_{(11)+(12)}\right) \mathbb{E}\left(y_{(21)+(22)}\right) \mathbb{E}\left(y_{(11)}\right) \mathbb{E}\left(y_{(22)}\right) \\
& =\mathbb{E}\left(y_{(11)}\right) \mathbb{E}\left(y_{(22)}\right) \mathbb{E}\left(y_{(11)+(21)}\right) \mathbb{E}\left(y_{(12)+(22)}\right) \mathbb{E}\left(y_{(12)}\right) \mathbb{E}\left(y_{(21)}\right) .
\end{aligned}
$$

The common value of both sides is the Donaldson-Thomas invariant $\mathbb{E}_{Q, W}$ where W is the superpotential determined by traversing the oriented cycle once.

The left-hand side comes from an ordering on horizontal positive roots; the right-hand side comes from an ordering on vertical positive roots.

Let $\Phi\left(A_{N}\right)$ denote the set of positive roots of type A_{N}; let $\Delta\left(A_{N}\right)$ denote the set of simple roots (this is identified with $\left.\left(A_{N}\right)_{0}\right)$.

Theorem (A.-Rimányi (2016))

For the square product $A_{n} \square A_{m}$ we have the identity

$$
\prod_{(i, \phi) \in \Delta\left(A_{n}\right) \times \Phi\left(A_{m}\right)} \mathbb{E}\left(y_{(i, \phi)}\right)=\prod_{(\psi, j) \in \Phi\left(A_{n}\right) \times \Delta\left(A_{m}\right)} \mathbb{E}\left(y_{(\psi, j)}\right)
$$

How to prove?

Theorem (A.-Rimányi (2016))

For the square product $A_{n} \square A_{m}$ we have the identity

$$
\prod_{(i, \phi) \in \Delta\left(A_{n}\right) \times \Phi\left(A_{m}\right)} \mathbb{E}\left(y_{(i, \phi)}\right)=\prod_{(\psi, j) \in \Phi\left(A_{n}\right) \times \Delta\left(A_{m}\right)} \mathbb{E}\left(y_{(\psi, j)}\right)
$$

- Method 1. Cluster theory and combinatorics
- Find a maximal green sequence of quiver mutations
- Keller $(2011,2013)$ describes how, from this, one can algorithmically write down the factors on each side
- The result must be the DT-invariant $\mathbb{E}_{Q, W}$
- Method 2. Topology and geometry (our method)
- For each γ, stratify \mathbf{M}_{γ}.
- Use spectral sequence for stratification to relate Poincaré series for cohomology of each strata.

Stratify the representation space

- Recall that by Gabriel's theorem, a Dynkin quiver with dimension vector \mathbf{d} has finitely many $\mathbf{G}_{\mathbf{d}}$ orbits in $\mathbf{M}_{\mathbf{d}}$.
- In fact, each orbit corresponds to a vector $\left(m_{\beta}\right)_{\beta \in \Phi}$ such that

$$
\mathbf{d}=\sum_{\beta} m_{\beta} \beta
$$

- Fix a dimension vector γ for $A_{n} \square A_{m}$ and form strata in \mathbf{M}_{γ} as follows.
- For each $i \in \Delta\left(A_{n}\right)$, fix a Dynkin quiver orbit along the corresponding row.
- Allow complete freedom in the maps along vertical arrows of the quiver.
- Call this a horizontal stratum.
- There are finitely many of these.
- Similarly define vertical strata by fixing orbits along columns corresponding to $j \in \Delta\left(A_{m}\right)$.

Fix the dimension vector $\gamma=\left(\begin{array}{cc}2 & 2 \\ 1 & 1\end{array}\right)$

η	$\begin{array}{lll}0 \\ 0 & \\ 0 & 0 \\ 0 & 0\end{array}$	$\begin{array}{lll}1 & 1 \\ 0 & 1 \\ 0 & 0\end{array}$	$\begin{array}{lll} \\ 0 & 2 \\ 1 & 0 \\ 1 & 1\end{array}$	$\begin{array}{lll} \\ & 1 \\ 1 & 1 \\ 1 & 1 \\ & 1\end{array}$	$\begin{array}{cc} \\ 2 & 0 \\ 0 & \\ 0 & 0\end{array}$	$\begin{array}{lll}2_{2} & \\ 1 & 2 \\ & 0\end{array}$
$\operatorname{codim}\left(\eta ; \mathbf{M}_{\gamma}\right)$	0	1	1	2	4	5

Table: The six horizontal strata.

θ	11 1 0	${ }_{1}^{12} 00$	$0 \begin{aligned} & 21 \\ & 10\end{aligned}$	${ }_{0}^{22} \begin{aligned} & 2 \\ & 11\end{aligned}$
$\operatorname{codim}\left(\theta ; \mathbf{M}_{\gamma}\right)$	0	2	2	4

Table: The four vertical strata.

Equivariant cohomology spectral sequence

Let $G \circlearrowright X$ and let $X=\bigcup_{j} \eta_{j}$ be a stratification by G-invariant subvarieties. Form

$$
F_{i}=\bigcup_{\operatorname{codim}_{\mathbb{R}}\left(\eta_{j}\right) \leqslant i} \eta_{j}
$$

and obtain a topological filtration

$$
F_{0} \subset F_{1} \subset \cdots \subset F_{\operatorname{dim}_{\mathbb{R}}(X)}=X
$$

Apply the Borel construction for equivariant cohomology to obtain

$$
B_{G} F_{0} \subset B_{G} F_{1} \subset \cdots \subset B_{G} X .
$$

There is an associated spectral sequence in cohomology $E_{\text {, }}^{p, q}$.

Remark

The application of this spectral sequence goes at least back to Atiyah \& Bott (1983), to study Yang-Mills equations.

Rapid-decay cohomology from superpotential

Let X be a complex manifold/variety and $f: X \rightarrow \mathbb{C}$ a regular function. For $t \in \mathbb{R}$, set $S_{t}=\{z \in \mathbb{C}: \Re[z]<t\}$.

Definition 3

The rapid-decay cohomology $\mathrm{H}^{*}(X ; f)$ is the limit as $t \rightarrow-\infty$ of the cohomology of the pair $\mathrm{H}^{*}\left(X, f^{-1}\left(S_{t}\right)\right)$.
Fortunately, this stabilizes at some finite $t_{0} \ll 0$. And...if X has a G-action, an equivariant version can be defined.

On \mathbf{M}_{γ} we have a natural choice of regular function as follows.

- Assign the sum over oriented square paths $p, W=-\sum_{p} p$ as a superpotential on $Q .(W \in \mathbb{C} Q /[\mathbb{C} Q, \mathbb{C} Q])$
- Define a regular function $W_{\gamma}: \mathbf{M}_{\gamma} \rightarrow \mathbb{C}$ by

$$
\left(f_{a}\right)_{a \in Q_{1}} \in \mathbf{M}_{\gamma} \longmapsto-\sum_{p} \operatorname{Tr}\left(f_{p}\right)
$$

where f_{p} means the composition around the oriented square p.

Theorem (A.-Rimányi)

The spectral sequence $E_{0}^{i j}$ (in rapid decay cohomology) converges to
$\mathbf{H}_{\mathbf{G}_{\gamma}}^{*}\left(\mathbf{M}_{\gamma} ; W_{\gamma}\right)$ and

- the spectral sequence degenerates at the E_{1} page;
- taking the direct sum over all horizontal strata η

$$
\left.E_{1}^{i j}=\bigoplus_{\operatorname{codim}}^{\mathbb{R}}\left(\eta ; \mathbf{M}_{\gamma}\right)=i=1 H_{\mathbf{G}_{\eta}}^{j}\left(\eta ; W_{\gamma}\right)=\bigoplus_{\operatorname{codim}}^{\mathbb{R}}\left(\eta ; \mathbf{M}_{\gamma}\right)=i\right)
$$

- taking the direct sum over all vertical strata θ

$$
E_{1}^{i j}=\bigoplus_{\operatorname{codim}}^{\mathbb{R}}\left(\theta ; \mathbf{M}_{\gamma}\right)=i \quad H_{\mathbf{G}_{\theta}}^{j}\left(\theta ; W_{\gamma}\right)=\bigoplus_{\operatorname{codim}_{\mathbb{R}}\left(\theta ; \mathbf{M}_{\gamma}\right)=i} H^{j-\mathbf{w}(\theta)}\left(B \mathbf{G}_{\theta}\right) .
$$

\mathbf{G}_{η} (resp. \mathbf{G}_{θ}) is an "isotropy subgroup" for η (resp. θ). Picture please...

Convergence of $E^{p, q}$ for $A_{2} \square A_{2}$ with $\gamma=\left(\begin{array}{ll}2 & 2 \\ 1 & 1\end{array}\right)$

horizontal strata

codimensions
vertical strata
$1 \begin{aligned} & 12 \\ & 01\end{aligned} 0_{10}^{21} 1-0_{11}^{22} 0$

Recall for $A_{2} \square A_{2}$ the identity

$$
\begin{aligned}
& \mathbb{E}\left(y_{(12)}\right) \mathbb{E}\left(y_{(21)}\right) \mathbb{E}\left(y_{(11)+(12)}\right) \mathbb{E}\left(y_{(21)+(22)}\right) \mathbb{E}\left(y_{(11)}\right) \mathbb{E}\left(y_{(22)}\right) \\
&=\mathbb{E}\left(y_{(11)}\right) \mathbb{E}\left(y_{(22)}\right) \mathbb{E}\left(y_{(11)+(21)}\right) \mathbb{E}\left(y_{(12)+(22)}\right) \mathbb{E}\left(y_{(12)}\right) \mathbb{E}\left(y_{(21)}\right) .
\end{aligned}
$$

Our theorem is that the identity above encodes the picture on the previous page simultaneously for all dimension vectors.

Other questions/projects:

- Find a combinatorial Rosetta stone between stratifications and maximal green sequences.
- Play the game above with different stratifications
- Complete the picture above for $A_{n} \square D_{m}, A_{n} \square E_{m}, D_{n} \square E_{m}$, etc.

