Donaldson–Thomas invariants for A-type square product quivers

Justin Allman¹ (Joint work with Richárd Rimányi²)

¹US Naval Academy

²UNC Chapel Hill

4th Conference on Geometric Methods in Representation Theory University of Missouri, 19 November 2016

Quantum dilogarithm series and pentagon identity

Definition 1

For a variable z, the quantum dilogarithm series in $\mathbb{Q}(q^{1/2})[[z]]$ is

$$\mathbb{E}(z) = 1 + \sum_{n=1}^{\infty} \frac{(-z)^n q^{n^2/2}}{\prod_{i=1}^n (1-q^i)}.$$

Theorem (Pentagon identity)

In the algebra $\mathbb{Q}(q^{1/2})[[y_1,y_2]]/(y_2y_1-qy_1y_2)$ we have

$$\mathbb{E}(y_1)\mathbb{E}(y_2) = \mathbb{E}(y_2)\mathbb{E}(-q^{-1/2}y_2y_1)\mathbb{E}(y_1).$$

This identity is often credited to Schützenberger (1953) but appeared more or less in the form above in the work of Faddeev–Kashaev (1994) as a quantum mechanical generalization of a dilogarithm function defined first by Euler, and then refined by Rogers (1907).

We seek generalizations of this identity.

Quivers

- Let $Q = (Q_0, Q_1)$ be a quiver with vertex set Q_0 and arrow set Q_1 .
- For a ∈ Q₁ let ta, ha ∈ Q₀ respectively denote its head and tail (target and source) vertex.
- $\bullet\,$ For any dimension vector γ we have the representation space

$$\mathsf{M}_{\gamma} = \bigoplus_{a \in Q_1} \mathsf{Hom}(\mathbb{C}^{\gamma(ta)}, \mathbb{C}^{\gamma(ha)})$$

with action of the algebraic group $\mathbf{G}_{\gamma} = \prod_{i \in Q_0} \operatorname{GL}(\mathbb{C}^{\gamma(i)})$ by base-change at each vertex.

• For dimension vectors $\gamma_1, \gamma_2 \in \mathbb{N}^{Q_0}$ let χ denote the Euler form:

$$\chi(\gamma_1,\gamma_2) = \sum_{i \in Q_0} \gamma_1(i)\gamma_2(i) - \sum_{a \in Q_1} \gamma_1(ta)\gamma_2(ha).$$

• Let λ denote its opposite anti-symmetrization

$$\lambda(\gamma_1,\gamma_2) = \chi(\gamma_2,\gamma_1) - \chi(\gamma_1,\gamma_2).$$

Quantum algebra of Q

Let $q^{1/2}$ be an indeterminate and q denote its square. The **quantum** algebra \mathbb{A}_Q of the quiver is the $\mathbb{Q}(q^{1/2})$ -algebra

- generated by the symbols y_{γ} , one for each dimension vector γ ;
- subject to the relation

$$y_{\gamma_1+\gamma_2}=-q^{-\frac{1}{2}\lambda(\gamma_1,\gamma_2)}y_{\gamma_1}y_{\gamma_2}.$$

Remark

The elements y_{γ} form a $\mathbb{Q}(q^{1/2})$ -vector space basis. The elements $y_{\mathbf{e}_i}$ form a set of algebraic generators. (Where \mathbf{e}_i is the dimension vector with 1 at the *i*-th vertex and zeroes elsewhere)

Observe we that the relation above also implies that

$$y_{\gamma_1}y_{\gamma_2}=q^{\lambda(\gamma_1,\gamma_2)}y_{\gamma_2}y_{\gamma_1}.$$

Remark

Notice that

$$\lambda(\mathbf{e}_i, \mathbf{e}_j) = \#\{\text{arrows } i \to j\} - \#\{\text{arrows } j \to i\}.$$

Consider the quiver $1 \leftarrow 2$ and let $y_{\mathbf{e}_i} = y_i$. Then

$$y_2 y_1 = q y_1 y_2$$
 $y_{\mathbf{e}_1 + \mathbf{e}_2} = -q^{-1/2} y_2 y_1$

Thus the pentagon identity says that

$$\mathbb{E}(y_1)\mathbb{E}(y_2) = \mathbb{E}(y_2)\mathbb{E}(y_{\mathbf{e}_1+\mathbf{e}_2})\mathbb{E}(y_1).$$

The left-hand side gives an ordering of the **simple** roots of A_2 ; the right-hand side gives an ordering for the **positive** roots of A_2 .

Definition 2

A **Dynkin quiver** is an orientation of a type A, D, or E Dynkin diagram. By Gabriel's Theorem, these are exactly the **representation finite** quivers, i.e. for which there are only finitely many \mathbf{G}_{γ} -orbits in \mathbf{M}_{γ} .

- For each $i \in Q_0$, there is a simple root α_i , which is identified with the dimension vector \mathbf{e}_i .
- Since each positive root $\beta = \sum_i d_i^{\beta} \alpha_i$ for some positive integers d_i^{β} , these are also identified with dimension vectors.

Theorem (Reineke (2010), Rimányi (2013))

 α

For Dynkin quivers Q there exist orderings on the simple and positive roots such that

$$\prod_{\alpha \text{ simple}}^{\widehat{\alpha}} \mathbb{E}(y_{\alpha}) = \prod_{\beta \text{ positive}}^{\widehat{\alpha}} \mathbb{E}(y_{\beta}).$$

where "¬" indicates the products are taken in the specified orders.

Theorem (Reineke (2010), Rimányi (2013))

For Dynkin quivers Q there exist orderings on the simple and positive roots such that

$$\prod_{\alpha \text{ simple}}^{\neg} \mathbb{E}(y_{\alpha}) = \prod_{\beta \text{ positive}}^{\neg} \mathbb{E}(y_{\beta}).$$

where the arrows indicate the products are taken in the specified orders.

The common value of both sides above is the **Donaldson–Thomas** invariant \mathbb{E}_Q of the quiver Q.

It is known that the identity above is a consequence of the Pentagon Identity.

Square products

The **square product** of two Dynkin quivers is formed by the process below: (Here we do the example $A_3 \square D_4$)

• Assign alternating orientations to A_3 and D_4 , e.g.

$$A_3: 1 \longleftarrow 2 \longrightarrow 3$$
 and $D_4: 1 \longleftarrow 2 \longleftarrow 4$

- make a grid of vertices $A_3 \times D_4$ (use matrix notation to name locations)
- reverse the arrows in the full sub-quivers $\{i\} \times D_4$ and $A_3 \times \{j\}$ whenever *i* is a sink in A_3 and *j* is a source in D_4 .
- The result is the diagram of oriented squares:

• The "o" nodes are called odd, the "•" nodes are called even.

Example: $A_2 \square A_2$

• Begin with $(1 \leftarrow 2) \times (1 \rightarrow 2)$.

• For
$$u, v \in Q_0$$
, let $y_{\mathbf{e}_u} = y_u$;

• let
$$y_{\mathbf{e}_u+\mathbf{e}_v}=y_{u+v}$$
.

$$\begin{array}{ccc} (11) \longleftarrow (12) \\ \downarrow & \uparrow \\ (21) \longrightarrow (22) \end{array}$$

Theorem (Keller (2011,2013), A.-Rimányi (2016))

We have the following identity of quantum dilogarithm series

$$\begin{split} \mathbb{E}(y_{(12)}) \mathbb{E}(y_{(21)}) \mathbb{E}(y_{(11)+(12)}) \mathbb{E}(y_{(21)+(22)}) \mathbb{E}(y_{(11)}) \mathbb{E}(y_{(22)}) \\ &= \mathbb{E}(y_{(11)}) \mathbb{E}(y_{(22)}) \mathbb{E}(y_{(11)+(21)}) \mathbb{E}(y_{(12)+(22)}) \mathbb{E}(y_{(12)}) \mathbb{E}(y_{(21)}). \end{split}$$

The common value of both sides is the Donaldson–Thomas invariant $\mathbb{E}_{Q,W}$ where W is the superpotential determined by traversing the oriented cycle once.

The left-hand side comes from an ordering on **horizontal positive roots**; the right-hand side comes from an ordering on **vertical positive roots**.

The general statement

Let $\Phi(A_N)$ denote the set of positive roots of type A_N ; let $\Delta(A_N)$ denote the set of simple roots (this is identified with $(A_N)_0$).

Theorem (A.–Rimányi (2016))

For the square product $A_n \square A_m$ we have the identity

$$\prod_{(i,\phi)\in\Delta(A_n)\times\Phi(A_m)}^{\widehat{}}\mathbb{E}(y_{(i,\phi)})=\prod_{(\psi,j)\in\Phi(A_n)\times\Delta(A_m)}^{\widehat{}}\mathbb{E}(y_{(\psi,j)})$$

Theorem (A.–Rimányi (2016))

For the square product $A_n \square A_m$ we have the identity

$$\prod_{(i,\phi)\in\Delta(A_n)\times\Phi(A_m)}^{\widehat{}}\mathbb{E}(y_{(i,\phi)}) = \prod_{(\psi,j)\in\Phi(A_n)\times\Delta(A_m)}^{\widehat{}}\mathbb{E}(y_{(\psi,j)})$$

• Method 1. Cluster theory and combinatorics

- Find a maximal green sequence of quiver mutations
- Keller (2011, 2013) describes how, from this, one can algorithmically write down the factors on each side
- The result must be the DT-invariant $\mathbb{E}_{Q,W}$
- Method 2. Topology and geometry (our method)
 - For each γ , stratify \mathbf{M}_{γ} .
 - Use spectral sequence for stratification to relate Poincaré series for cohomology of each strata.

Stratify the representation space

- Recall that by Gabriel's theorem, a Dynkin quiver with dimension vector **d** has finitely many G_d orbits in M_d .
- In fact, each orbit corresponds to a vector $(m_{\beta})_{\beta \in \Phi}$ such that

$$\mathbf{d} = \sum_{\beta} m_{\beta} \beta.$$

- Fix a dimension vector γ for $A_n \square A_m$ and form strata in \mathbf{M}_{γ} as follows.
 - For each i ∈ Δ(A_n), fix a Dynkin quiver orbit along the corresponding row.
 - Allow complete freedom in the maps along vertical arrows of the quiver.
 - Call this a horizontal stratum.
 - There are finitely many of these.
 - Similarly define vertical strata by fixing orbits along columns corresponding to j ∈ Δ(A_m).

Example: $A_2 \square A_2$

Fix the dimension vector $\gamma = \left(\begin{smallmatrix} 2 & 2 \\ 1 & 1 \end{smallmatrix}\right)$

η	$\begin{smallmatrix}&2\\&0&0\\0&&0\\&1\end{smallmatrix}$	$\begin{smallmatrix}&1\\&1&1\\0&&0\\&1\end{smallmatrix}$	$\begin{smallmatrix}&2\\&0&0\\1&&1\\&0\end{smallmatrix}$	$\begin{smallmatrix}&1\\&1&1\\1&&1\\&0\end{smallmatrix}$	$\begin{smallmatrix}&0\\2&&2\\0&&0\\&1\end{smallmatrix}$	$\begin{smallmatrix}&0\\2&&2\\1&&1\\&0\end{smallmatrix}$	
$codim(\eta;\mathbf{M}_\gamma)$	0	1	1	2	4	5	

Table: The six horizontal strata.

θ	$\begin{smallmatrix}&1&1\\1&&&1\\&0&0\end{smallmatrix}$	$\begin{smallmatrix}&1&2\\1&&&0\\&0&1\end{smallmatrix}$	$\begin{smallmatrix}&2&1\\0&&&1\\&1&0\end{smallmatrix}$	$\begin{smallmatrix}&2&2\\0&&&0\\&1&1\end{smallmatrix}$	
$codim(heta;\mathbf{M}_\gamma)$	0	2	2	4	

Table: The four vertical strata.

Equivariant cohomology spectral sequence

Let $G \circlearrowright X$ and let $X = \bigcup_j \eta_j$ be a stratification by G-invariant subvarieties. Form

 $F_i = \bigcup_{\operatorname{codim}_{\mathbb{R}}(\eta_j) \leqslant i} \eta_j$

and obtain a topological filtration

$$F_0 \subset F_1 \subset \cdots \subset F_{\dim_{\mathbb{R}}(X)} = X.$$

Apply the Borel construction for equivariant cohomology to obtain

$$B_G F_0 \subset B_G F_1 \subset \cdots \subset B_G X.$$

There is an associated spectral sequence in cohomology $E^{p,q}_{\bullet}$.

Remark

The application of this spectral sequence goes at least back to Atiyah & Bott (1983), to study Yang–Mills equations.

Rapid-decay cohomology from superpotential

Let X be a complex manifold/variety and $f : X \to \mathbb{C}$ a regular function. For $t \in \mathbb{R}$, set $S_t = \{z \in \mathbb{C} : \Re[z] < t\}$.

Definition 3

The **rapid-decay cohomology** $H^*(X; f)$ is the limit as $t \to -\infty$ of the cohomology of the pair $H^*(X, f^{-1}(S_t))$. Fortunately, this stabilizes at some finite $t_0 \ll 0$. And...if X has a *G*-action, an equivariant version can be defined.

On \mathbf{M}_{γ} we have a natural choice of regular function as follows.

- Assign the sum over oriented square paths p, W = -∑_p p as a superpotential on Q. (W ∈ CQ/[CQ, CQ])
- Define a regular function $W_{\gamma} : \mathbf{M}_{\gamma} \to \mathbb{C}$ by

$$(f_a)_{a \in Q_1} \in \mathbf{M}_{\gamma} \longmapsto -\sum_p \operatorname{Tr}(f_p)$$

where f_p means the *composition* around the oriented square p.

The big idea

Theorem (A.–Rimányi)

The spectral sequence E^{ij}_{\bullet} (in rapid decay cohomology) converges to $H^*_{G_{\gamma}}(M_{\gamma}; W_{\gamma})$ and

- the spectral sequence degenerates at the E₁ page;
- taking the direct sum over all horizontal strata η

$$\mathsf{E}_{1}^{ij} = \bigoplus_{\mathsf{codim}_{\mathbb{R}}(\eta; \mathbf{M}_{\gamma})=i} \mathsf{H}_{\mathbf{G}_{\eta}}^{j}(\eta; W_{\gamma}) = \bigoplus_{\mathsf{codim}_{\mathbb{R}}(\eta; \mathbf{M}_{\gamma})=i} \mathsf{H}^{j-\mathbf{w}(\eta)}(B\mathbf{G}_{\eta});$$

• taking the direct sum over all vertical strata θ

$$E_1^{ij} = \bigoplus_{\operatorname{codim}_{\mathbb{R}}(\theta; \mathbf{M}_{\gamma}) = i} \operatorname{H}^{j}_{\mathbf{G}_{\theta}}(\theta; W_{\gamma}) = \bigoplus_{\operatorname{codim}_{\mathbb{R}}(\theta; \mathbf{M}_{\gamma}) = i} \operatorname{H}^{j-\mathbf{w}(\theta)}(B\mathbf{G}_{\theta}).$$

 \mathbf{G}_{η} (resp. \mathbf{G}_{θ}) is an "isotropy subgroup" for η (resp. θ). Picture please...

Convergence of $E^{p,q}_{\bullet}$ for $A_2 \square A_2$ with $\gamma = \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix}$

horizontal strata							vertical strata						
$\begin{smallmatrix}&0\\&2&&2\\1&&&1\\&0\end{smallmatrix}$	$\begin{smallmatrix}&0\\2&&2\\0&&2\\&1\end{smallmatrix}$	-	$\begin{smallmatrix}&1\\1&&1\\&1&&1\\&0\end{smallmatrix}$	$\begin{smallmatrix}&2\\0&&0\\1&&1\\&0\end{smallmatrix}$	$\begin{smallmatrix}&1\\1&&1\\0&&0\\&1\end{smallmatrix}$	$\begin{smallmatrix}&2\\0&&0\\&&0\\&1\end{smallmatrix}$		$\begin{smallmatrix}&1&1\\1&&&1\\&0&0\end{smallmatrix}$	_	$\begin{smallmatrix}&1&2\\1&&&0\\&0&1\end{smallmatrix}$	$\begin{smallmatrix}&2&1\\0&&&1\\&1&0\end{smallmatrix}$	_	0 ^{2 2} _{1 1} 0
	:	÷	÷	÷	÷	÷	:	÷	÷	:	÷	÷	÷
188	80	0	210	50	56	9	160	56	0	130	130	0	188
108	50	0	126	34	35	6	87	35	0	80	80	0	108
58	30	0	70	22	20	4	43	20	0	46	46	0	58
28	16	0	35	13	10	2	18	10	0	24	24	0	28
12	8	0	15	7	4	1	6	4	0	11	11	0	12
4	3	0	5	3	1	Î	1	1	0	4	4	0	4
1	1	0	1	1	w	w	0	w	0	1	1	0	1
5	4	3	2	1	1	0		0	1	2	2	3	4
·													

Wrap-up

Recall for $A_2 \square A_2$ the identity

$$\begin{split} \mathbb{E}(y_{(12)}) \mathbb{E}(y_{(21)}) \mathbb{E}(y_{(11)+(12)}) \mathbb{E}(y_{(21)+(22)}) \mathbb{E}(y_{(11)}) \mathbb{E}(y_{(22)}) \\ &= \mathbb{E}(y_{(11)}) \mathbb{E}(y_{(22)}) \mathbb{E}(y_{(11)+(21)}) \mathbb{E}(y_{(12)+(22)}) \mathbb{E}(y_{(12)}) \mathbb{E}(y_{(21)}). \end{split}$$

Our theorem is that the identity above encodes the picture on the previous page *simultaneously* for *all* dimension vectors.

Other questions/projects:

- Find a combinatorial Rosetta stone between stratifications and maximal green sequences.
- Play the game above with different stratifications
- Complete the picture above for $A_n \square D_m$, $A_n \square E_m$, $D_n \square E_m$, etc.