Quantum Binary Polyhedral Groups
And Their Actions On Quantum Planes

Chelsea Walton

Joint work with Kenneth Chan, Ellen Kirkman, and James Zhang

November 18, 2012
An investigation of noncommutative/ Hopf invariant theory...
An investigation of noncommutative/ Hopf invariant theory...
...quantizations of results in classical invariant theory
Goal

An investigation of noncommutative/ Hopf invariant theory...
...quantizations of results in classical invariant theory

Actions of finite subgroups of $SL_2(\mathbb{C})$

on

“planes” $\mathbb{C}[u, v]$
An investigation of noncommutative/ Hopf invariant theory...
...quantizations of results in classical invariant theory

Actions of quantum finite subgroups of $SL_2(\mathbb{C})$
on

“quantum planes”: noncommutative $\mathbb{C}[u, v]"
Let’s recall some classical results.

Take G a finite subgroup of $GL_2(k)$ acting faithfully on $k[u, v]$.

Put $k = \mathbb{C}$
Let’s recall some **classical results**.

Take G a finite subgroup of $GL_2(k)$ acting faithfully on $k[u, v]$.

[STC] $k[u, v]^G$ regular?

$k[u, v]^G \cong k[u', v'] \iff G \text{ is generated by reflections.}$
Let’s recall some classical results.

Take G a finite subgroup of $GL_2(k)$ acting faithfully on $k[u, v]$.

G is generated by reflections.

[Watanabe] $k[u, v]^G$ Gorenstein?

$G \leq SL_2(k) \implies k[u, v]^G$ Gorenstein
Let’s recall some classical results.

Take G a finite subgroup of $GL_2(k)$ acting faithfully on $k[u, v]$.

$$[STC] \quad k[u, v]^G \text{ regular?}$$
$$k[u, v]^G \cong k[u', v'] \iff$$
G is generated by reflections.

$$[Watanabe] \quad k[u, v]^G \text{ Gorenstein?}$$
$$G \leq SL_2(k) \implies k[u, v]^G \text{ Gorenstein}$$

$$[Klein] \quad \text{Finite subgroups of } SL_2(k) \text{ are classified up to conjugation.}$$
$$\text{types: } A_n \quad D_n \quad E_6 \quad E_7 \quad E_8$$

“binary polyhedral groups” = G_{BPG}

...they are not generated by reflections
Let’s recall some classical results.

Take G a finite subgroup of $GL_2(k)$ acting faithfully on $k[u, v]$.

[STC] $k[u, v]^G$ regular?

$k[u, v]^G \cong k[u', v'] \iff G$ is generated by reflections.

[Watanabe] $k[u, v]^G$ Gorenstein?

$G \leq SL_2(k) \implies k[u, v]^G$ Gorenstein

[Klein] Finite subgroups of $SL_2(k)$ are classified up to conjugation.

types: $A_n \quad D_n \quad E_6 \quad E_7 \quad E_8$

“binary polyhedral groups” $=: G_{BPG}$

...they are not generated by reflections

The “Kleinian” or “DuVal” singularities $X = \text{Spec}(k[u, v]^{G_{BPG}})$ are precisely the rational double points and the resolution graph of X is Dynkin.
Objects of Study

“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”
Objects of Study

“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”
Objects of Study

“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”

For $q \in k^\times$, categorically–

quantum groups - dual to - Hopf algs

$SL_q(2) \cdots \cdots \cdots \mathcal{O}_q(SL_2(k))$

G_q fin. subgrp \hspace{1cm} $\mathcal{O}_q(G)$ fin. Hopf quot.
Objects of Study

“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”

Finite dim’l Hopf algebras H

For $q \in k^\times$, categorically–
quantum groups - dual to - Hopf algs

$SL_q(2) \cdots \cdots \cdots \cdots \cdots \mathcal{O}_q(SL_2(k))$

G_q fin. subgrp $\cdots \cdots \cdots \cdots \cdots \mathcal{O}_q(G)$ fin. Hopf quot.
Objects of Study

“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”

Finite dim’l Hopf algebras H

...that are not necessarily finite quotients of $O_q(SL_2(k))$

with structure: $(H, m, \Delta, u, \varepsilon, S)$
“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”

Finite dim’l Hopf algebras H

...that are not necessarily finite quotients of $\mathcal{O}_q(SL_2(k))$

with structure: $(H, m, \Delta, u, \varepsilon, S)$

AS regular algebras R of gldim 2

AS = Artin-Schelter
* R is graded with $R_0 = k$
* global dimension 2
* AS-Gorenstein
* polynomial growth
“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”

Finite dim’l Hopf algebras H

...that are not necessarily finite quotients of $\mathcal{O}_q(SL_2(k))$

with structure: $(H, m, \Delta, u, \varepsilon, S)$

AS regular algebras R of gldim 2

AS = Artin-Schelter
* R is graded with $R_0 = k$
* global dimension 2
* AS-Gorenstein
* polynomial growth

Viewed as ‘noncommutative $k[u, v]$’ in Noncommutative Projective AG
Objects of Study

“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”

Finite dim’l Hopf algebras H

...that are not necessarily finite quotients of $O_q(SL_2(k))$

with structure: $(H, m, \Delta, u, \epsilon, S)$

AS regular algebras R of gldim 2

AS = Artin-Schelter
* R is graded with $R_0 = k$
* global dimension 2
* AS-Gorenstein
* polynomial growth

Classified up to isomorphism:

$k_q[u, v] := k[u, v]/(vu - quv), \ q \in k^\times$

$k_J[u, v] := k[u, v]/(vu - uv - u^2)$
Objects of Study

“quantum finite subgroups of $SL_2(k)$” acting on “quantum planes”

Finite dim’l Hopf algebras H

...that are not necessarily finite

quotients of $O_q(SL_2(k))$

with structure: (H, m, Δ, u, v, S)

AS regular algebras R of gldim 2

* R is graded with $R_0 = k$
* global dimension 2
* AS-Gorenstein
* polynomial growth

Classified up to isomorphism:

$k_q[u, v] := k\langle u, v \rangle /(vu - quv), \ q \in k^\times$

$k_J[u, v] := k\langle u, v \rangle /(vu - uv - u^2)$

H acts on R if R is a left H-module algebra: R is a left H-module and

$h \cdot (ab) = \sum (h_1 \cdot a)(h_2 \cdot b)$ and $h \cdot 1_R = \epsilon(h)1_R$ for all $h \in H$, and for all $a, b \in R$
Let $H \neq k$ be a finite dimensional Hopf algebra acting on an AS regular algebra R of global dimension 2.

(H1) [notion of faithfulness]

(H2) H preserves the grading of R

(H3) [notion of H-action having ‘determinant 1’]

... as results involving G with $\det(G) = 1$ motivate our results.

See [DuVal-McKay] for instance.
Let $H \neq k$ be a finite dimensional Hopf algebra acting on an AS regular algebra R of global dimension 2.

(H1) H acts on R inner faithfully: there is not an induced action of H/I on R for any nonzero Hopf ideal I of H

(H2) H preserves the grading of R

(H3) [notion of H-action having ‘determinant 1’] ... as results involving G with $\det(G) = 1$ motivate our results.

See [DuVal-McKay] for instance.
Let $H \neq k$ be a finite dimensional Hopf algebra acting on an AS regular algebra R of global dimension 2.

(H1) H acts on R inner faithfully:
there is not an induced action of H/I on R for any nonzero Hopf ideal I of H

(H2) H preserves the grading of R

(H3) H-action of R have trivial “homological determinant”.
here, $\text{hdet}_HR: H \to k$ and it is trivial if equal to the counit map ϵ
Let $H \neq k$ be a finite dimensional Hopf algebra acting on an AS regular algebra R of global dimension 2.

(H1) H acts on R inner faithfully:
there is not an induced action of H/I on R for any nonzero Hopf ideal I of H

(H2) H preserves the grading of R

(H3) H-action of R have trivial “homological determinant”.

Definition. A Hopf algebra H satisfying the conditions above is called a quantum binary polyhedral group, denoted by H_{QBPG}.
Main Result

Theorem. [CKWZ] The pairs (H_{QBPG}, R_{ASreg2}) are classified as follows.
Main Result

Theorem. [CKWZ] The pairs (H_{QBPG}, R_{Asreg2}) are classified as follows.

- **H noncom & s.s.**

 $(kG_{BPG}, k[u, v])$

 G_{BPG} nonabelian

- $(kD_{2n}, k_{-1}[u, v])$

 $n \geq 3$

- $(\mathcal{D}(G_{BPG})^\circ, k_{-1}[u, v])$

 $\mathcal{D}(G_{BPG})$: Hopf deformation

 of nonabelian b.p.g. [BN]
Main Result

Theorem. [CKWZ] The pairs \((H_{QBPG}, R_{Asreg2})\) are classified as follows.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H) noncom & s.s.</td>
<td>(kG_{BP}, k[u, v])
(G_{BP}) nonabelian</td>
</tr>
<tr>
<td>((kG_{BP}, k[u, v]))</td>
<td></td>
</tr>
<tr>
<td>(n \geq 3)</td>
<td></td>
</tr>
<tr>
<td>((kG_{BP}, k[u, v]))</td>
<td></td>
</tr>
<tr>
<td>(n \geq 3)</td>
<td></td>
</tr>
<tr>
<td>(H) comm (& s.s.)</td>
<td>*(kC_2, any (R))
diagonal action</td>
</tr>
<tr>
<td>((kC_2, k_{-1}[u, v]))</td>
<td></td>
</tr>
<tr>
<td>(n \geq 3)</td>
<td></td>
</tr>
<tr>
<td>(D(G_{BP})^\circ, k_{-1}[u, v])</td>
<td>(kC_n, k_q[u, v])
non-diagonal action</td>
</tr>
<tr>
<td>(D(G_{BP}): \text{Hopf deformation of nonabelian b.p.g. } [BN])</td>
<td>((kD_{2n})^\circ, k_{-1}[u, v])</td>
</tr>
<tr>
<td>(n \geq 3)</td>
<td></td>
</tr>
</tbody>
</table>
Main Result

Theorem. [CKWZ] The pairs \((H_{QBPG}, R_{Asreg2})\) are classified as follows.

<table>
<thead>
<tr>
<th>(H) noncom & s.s.</th>
<th>(H) comm (& s.s.)</th>
<th>(H) nonsemisimple</th>
</tr>
</thead>
<tbody>
<tr>
<td>((kG_{BPB}, k[u, v])) (G_{BPB}) nonabelian</td>
<td>((kC_2, any\ R)) diagonal action</td>
<td>For (q) is a root of 1, (q^2 \neq 1)</td>
</tr>
<tr>
<td>((kD_{2n}, k_{-1}[u, v])) (n \geq 3)</td>
<td>((kC_2, k_{-1}[u, v])) non-diagonal action</td>
<td>(((T_{q,\alpha}, k_{q^{-1}}[u, v])))</td>
</tr>
<tr>
<td>((D(G_{BPB})^\circ, k_{-1}[u, v])) (D(G_{BPB})): Hopf deformation of nonabelian b.p.g. [BN]</td>
<td>((kC_n, k_q[u, v])) (n \geq 3) (n \geq 3)</td>
<td>((H, k_{q^{-1}}[u, v])) (\text{ord}(q)) odd (1 \rightarrow (kG_{BPB})^\circ \rightarrow H^\circ \rightarrow \overline{O_q(SL_2)} \rightarrow 1)</td>
</tr>
<tr>
<td>((D(2n)^\circ, k_{-1}[u, v])) (n \geq 3)</td>
<td>((D(2n)^\circ, k_{-1}[u, v])) (n \geq 3)</td>
<td>((H, k_{q^{-1}}[u, v])) (\text{ord}(q)) even (1 \rightarrow (kG_{PG})^\circ \rightarrow H^\circ \rightarrow \overline{O_q(SL_2)} \rightarrow 1)</td>
</tr>
</tbody>
</table>
Main Result

Theorem. [CKWZ] The pairs \((H_{QBPG}, R_{AS_{reg}2})\) are classified as follows.

\[
R = k[u, v] \implies H = kG_{BPG}, \text{ no "new" } H
\]

<table>
<thead>
<tr>
<th></th>
<th>(H) noncom & s.s.</th>
<th>(H) comm (& s.s.)</th>
<th>(H) nonsemisimple</th>
</tr>
</thead>
<tbody>
<tr>
<td>((kG_{BPG}, k[u, v])) (G_{BPG}) nonabelian</td>
<td>((kC_2, k[u, v])) (\text{diagonal action})</td>
<td>((kC_2, k_{-1}[u, v])) (\text{non-diagonal action})</td>
<td>For (q) is a root of 1, (q^2 \neq 1)</td>
</tr>
<tr>
<td>((kD_{2n}, k_{-1}[u, v])) (n \geq 3)</td>
<td>((kC_n, k[u, v])) (n \geq 3)</td>
<td>((H, k_{q-1}[u, v])) (\text{ord}(q) \text{ odd}) ((T_q, \alpha, n)^\circ, k_{q-1}[u, v]) (T_q, \alpha, n): generalized Taft alg.</td>
<td></td>
</tr>
<tr>
<td>((\mathcal{D}(G_{BPG})^\circ, k_{-1}[u, v])) (\mathcal{D}(G_{BPG})): Hopf deformation of nonabelian b.p.g. [BN]</td>
<td>((kD_{2n})^\circ, k_{-1}[u, v]) (n \geq 3)</td>
<td>((H, k_{q-1}[u, v])) (\text{ord}(q) \text{ even})</td>
<td>(1 \to (kG_{BPG})^\circ \to H^\circ \to \overline{O_q(SL_2)} \to 1)</td>
</tr>
</tbody>
</table>

\[O_q(SL_2)\]
Main Result

Theorem. [CKWZ] The pairs \((H_{QBPG}, R_{ASreg})\) are classified as follows.

For \(R = k_{-1}[u, v]\)

<table>
<thead>
<tr>
<th>(H) noncom & s.s.</th>
<th>(H) comm (& s.s.)</th>
<th>(H) nonsemisimple</th>
</tr>
</thead>
<tbody>
<tr>
<td>((kG_{BPG}, k[u, v]))</td>
<td>((kC_2, k_{-1}[u, v]))</td>
<td>((q)) is a root of 1, (q^2 \neq 1)</td>
</tr>
<tr>
<td>(G_{BPG}) nonabelian</td>
<td>diagonal action</td>
<td>(((T_q, \alpha, n), k_{q_{-1}}[u, v])) (T_q, \alpha, n): generalized Taft alg.</td>
</tr>
<tr>
<td>((kD_{2n}, k_{-1}[u, v]))</td>
<td>non-diagonal action</td>
<td>((H, k_{q_{-1}}[u, v])) (\text{ord}(q)) odd</td>
</tr>
<tr>
<td>(n \geq 3)</td>
<td></td>
<td>(1 \to (k_{G_{BPG}}) \to H^\circ \to O_q(SL_2) \to 1)</td>
</tr>
<tr>
<td>((D(G_{BPG})^\circ, k_{-1}[u, v])) (D(G_{BPG}):) Hopf deformation of nonabelian b.p.g. [BN]</td>
<td>((kC_n, k_{-1}[u, v]))</td>
<td>((H, k_{q_{-1}}[u, v])) (\text{ord}(q)) even</td>
</tr>
<tr>
<td>(n \geq 3)</td>
<td>((kD_{2n})^\circ, k_{-1}[u, v]))</td>
<td>(1 \to (k_{G_{PG}}) \to H^\circ \to O_q(SL_2) \to 1)</td>
</tr>
</tbody>
</table>
Main Result

Theorem. [CKWZ] The pairs \((H_{QBPG}, R_{ASreg2})\) are classified as follows.

For \(R = k_q[u, v]\) with \(q\) a root of unity, \(q^2 \neq 1\)

<table>
<thead>
<tr>
<th>(H) noncom & s.s.</th>
<th>(H) comm (& s.s.)</th>
<th>(H) nonsemisimple</th>
</tr>
</thead>
<tbody>
<tr>
<td>((kG_{BPG}, k[u, v]))</td>
<td>((kC_2, k_q[u, v])) diagonal action</td>
<td>For (q) is a root of 1, (q^2 \neq 1)</td>
</tr>
<tr>
<td>(G_{BPG}) nonabelian</td>
<td>((kC_2, k_{-1}[u, v])) non-diagonal action</td>
<td>(((T_q,\alpha,n)^{\circ}, k_{q^{-1}}[u, v]))</td>
</tr>
<tr>
<td>((kD_{2n}, k_{-1}[u, v])) (n \geq 3)</td>
<td>((kC_n, k_q[u, v])) (n \geq 3)</td>
<td>((H, k_{q^{-1}}[u, v])) ord((q)) odd</td>
</tr>
<tr>
<td>(D(G_{BPG})): Hopf deformation of nonabelian b.p.g. [BN]</td>
<td>(((kD_{2n})^{\circ}, k_{-1}[u, v])) (n \geq 3)</td>
<td>((H, k_{q^{-1}}[u, v])) ord((q)) even</td>
</tr>
<tr>
<td>(1 \to (kG_{BPG})^{\circ} \to H^{\circ} \to \overline{o_q(SL_2)} \to 1)</td>
<td>(1 \to (kG_{PG})^{\circ} \to H^{\circ} \to \overline{o_q(SL_2)} \to 1)</td>
<td></td>
</tr>
</tbody>
</table>
Main Result

Theorem. [CKWZ] The pairs \((H_{QBPG}, R_{ASreg})\) are classified as follows.

For \(R = k_q[u, v]\) for \(q\) not a root of 1

<table>
<thead>
<tr>
<th>(H) noncom & s.s.</th>
<th>(H) comm (& s.s.)</th>
<th>(H) nonsemisimple</th>
</tr>
</thead>
<tbody>
<tr>
<td>((kG_{BPG}, k[u, v]))</td>
<td>((kC_2, k_q[u, v]))</td>
<td>For (q) is a root of 1, (q^2 \neq 1)</td>
</tr>
<tr>
<td>(G_{BPG}) nonabelian</td>
<td>diagonal action</td>
<td>(((T_q,\alpha, n)^{\circ}, k_{q^{-1}}[u, v]))</td>
</tr>
<tr>
<td>((kD_{2n}, k_{-1}[u, v]))</td>
<td>((kC_2, k_{-1}[u, v]))</td>
<td>(T_{q,\alpha, n} :) generalized Taft alg.</td>
</tr>
<tr>
<td>(n \geq 3)</td>
<td>non-diagonal action</td>
<td>((H, k_{q^{-1}}[u, v])) ord(q) odd</td>
</tr>
<tr>
<td>((\mathcal{D}(G_{BPG})^{\circ}, k_{-1}[u, v]))</td>
<td>((kC_n, k_q[u, v]))</td>
<td>(</td>
</tr>
<tr>
<td>(\mathcal{D}(G_{BPG}) :) Hopf deformation of nonabelian b.p.g. [BN]</td>
<td>(</td>
<td>1 \rightarrow (k_{G_{BPG}})^{\circ} \rightarrow H^{\circ} \rightarrow O_q(SL_2) \rightarrow 1</td>
</tr>
<tr>
<td>((kD_{2n})^{\circ}, k_{-1}[u, v]))</td>
<td>(</td>
<td>1 \rightarrow (k_{G_{BPG}})^{\circ} \rightarrow H^{\circ} \rightarrow O_q(SL_2) \rightarrow 1</td>
</tr>
</tbody>
</table>
Main Result

Theorem. [CKWZ] The pairs \((H_{QBPG}, R_{Asreg2})\) are classified as follows.

For \(R = k_J[u, v]\)

\[
\begin{array}{|c|c|c|}
\hline
H \text{ noncom \& s.s.} & H \text{ comm (\& s.s.)} & H \text{ nonsemisimple} \\
\hline
(kG_{BP}G, k[u, v]) & (kC_2, k_J[u, v]) & \text{For } q \text{ is a root of } 1, q^2 \neq 1 \\
G_{BP}G \text{ nonabelian} & \text{diagonal action} & (T_q, \alpha, n)^\circ, k_{q^{-1}}[u, v]) \\
(kD_{2n}, k_{-1}[u, v]) & (kC_2, k_{-1}[u, v]) & T_{q, \alpha, n}: \text{generalized Taft alg.} \\
n \geq 3 & \text{non-diagonal action} & (H, k_{q^{-1}}[u, v]) \text{ ord}(q) \text{ odd} \\
(\mathcal{D}(G_{BP}G)^\circ, k_{-1}[u, v]) & (kC_n, k_q[u, v]) & 1 \to (kG_{BP}G)^\circ \to H^\circ \to \overline{O_q(SL_2)} \to 1 \\
\mathcal{D}(G_{BP}G): \text{Hopf deformation} & n \geq 3 & (H, k_{q^{-1}}[u, v]) \text{ ord}(q) \text{ even} \\
of \text{nonabelian b.p.g. [BN]} & (kD_{2n})^\circ, k_{-1}[u, v]) & 1 \to (kG_{PG})^\circ \to H^\circ \to \overline{O_q(SL_2)} \to 1 \\
n \geq 3 & & \\
\hline
\end{array}
\]
Further Results

Given a pair \((H = H_{QBPG}, R = R_{ASreg2})\) in the main theorem, to say:

a finite dimensional Hopf algebra \(H\) acts inner faithfully and preserves the grading of an AS regular algebra \(R\) of gldim 2, with \(H\)-action having trivial homological determinant

we have the following results.

\[
R^H = \{ r \in R \mid h \cdot r = \epsilon(h)r \text{ for all } h \in H \}
\]

[On the regularity of the invariant subring \(R^H\), motivated by [STC]]

[On the Gorenstein condition for the invariant subring \(R^H\), motivated by [Watanabe]]
Given a pair \((H = H_{QBPG}, R = R_{ASreg2})\) in the main theorem, to say:

a finite dimensional Hopf algebra \(H\) acts inner faithfully and preserves the grading of an AS regular algebra \(R\) of gldim 2, with \(H\)-action having trivial homological determinant we have the following results.

\[R^H = \{ r \in R \mid h \cdot r = \epsilon(h)r \text{ for all } h \in H\}\]

Theorem. [CKWZ] Let \((H, R)\) be as above. If \(R^H \neq R\), then \(R^H\) is *not* AS-regular. (\(R^H\) has \(\infty\) gldim.)

[On the Gorenstein condition for the invariant subring \(R^H\), motivated by [Watanabe]]
Given a pair \((H = H_{QBPG}, R = R_{ASreg2})\) in the main theorem, to say:

a finite dimensional Hopf algebra \(H\) acts inner faithfully and preserves the grading of an AS regular algebra \(R\) of \(\text{gldim} \, 2\), with \(H\)-action having trivial homological determinant

we have the following results.

\[\mathcal{R} = \{ r \in R \mid h \cdot r = \varepsilon(h)r \text{ for all } h \in H \} \]

Theorem. [CKWZ] Let \((H, R)\) be as above. If \(\mathcal{R} \neq R\), then \(\mathcal{R}\) is *not* AS-regular. (\(\mathcal{R}\) has \(\infty\) \(\text{gldim}\)).

Proposition. [CKWZ] Let \((H, R)\) be as above. The invariant subring \(\mathcal{R}\) is AS-Gorenstein. (semisimple case by [KKZ])
Future Work

(1) Since R^H is Gorenstein and is not regular ...
Motivated by [DuVal-McKay] and others:

Study the geometry of ‘noncommutative Gorenstein singularities’ R^H
for (H, R) in the main theorem, particularly with H semisimple.

(2) Motivated by [STC] and others:
Study finite dimensional Hopf algebra actions on AS regular algebras
of gldim 2 with arbitrary homological determinant.

(3) Since AS regular algebras of gldim 3 have been classified...
Study finite dim'l Hopf algebra actions on AS reg. algs of gldim 3.
... AS regular algebras of gldim > 3 have not been classified.
Future Work

(1) Since R^H is Gorenstein and is not regular ...
Motivated by [DuVal-McKay] and others:

Study the geometry of ‘noncommutative Gorenstein singularities’ R^H
for (H, R) in the main theorem, particularly with H semisimple.

(2) Motivated by [STC] and others:

Study finite dimensional Hopf algebra actions on AS regular algebras
of gldim 2 with arbitrary homological determinant.
Future Work

(1) Since R^H is Gorenstein and is not regular ...
Motivated by [DuVal-McKay] and others:

Study the geometry of ‘noncommutative Gorenstein singularities’ R^H
for (H, R) in the main theorem, particularly with H semisimple.

(2) Motivated by [STC] and others:

Study finite dimensional Hopf algebra actions on AS regular algebras
of gldim 2 with arbitrary homological determinant.

(3) Since AS regular algebras of gldim 3 have been classified...

Study finite dim’l Hopf algebra actions on AS reg. algs of gldim 3.

... AS regular algebras of gldim > 3 have not been classified
References:

[DuVal-McKay] P. du Val, On isolated singularities of surfaces which do not affect the conditions of adjunction, 1934; J. McKay, Graphs, singularities, and finite groups, 1980.

[Klein] F. Klein, Ueber binäre Formen mit linearen Transformationen in sich selbst., 1875; Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade, 1884.

[STC] = [Ben93, Theorem 7.2.1]

[Watanabe] = [Ben93, Theorem 4.6.2]

Thank you for listening!