Universal deformation rings and tame blocks with two simple modules.

Jennifer Schaefer, Dickinson College
Joint work with F. Bleher and G. Llosent

Conference on Geometric Methods in Representation Theory
University of Missouri, Columbia, MO
November 19, 2012
In the 1980’s, Mazur, using work of Schlessinger, introduced deformations of Galois representations to study lifts of Galois representations over finite fields to p-adic representations.
In the 1980’s, Mazur, using work of Schlessinger, introduced deformations of Galois representations to study lifts of Galois representations over finite fields to p-adic representations.

In the 1990’s, Wiles and Taylor used Mazur’s deformation theory in the proof of Fermat’s Last Theorem.
In the 1980’s, Mazur, using work of Schlessinger, introduced deformations of Galois representations to study lifts of Galois representations over finite fields to p-adic representations.

In the 1990’s, Wiles and Taylor used Mazur’s deformation theory in the proof of Fermat’s Last Theorem.

The main motivation for determining universal deformation rings for finite groups is to test or verify conjectures about the ring structure of universal deformation rings for arbitrary Galois groups.
Let k be an algebraically closed field of characteristic 2.
Let k be an algebraically closed field of characteristic 2.

Let G be a finite group and let B be a block of the group algebra kG with semi-dihedral or generalized quaternion defect groups and precisely two isomorphism classes of simple B-modules.
Let k be an algebraically closed field of characteristic 2.

Let G be a finite group and let B be a block of the group algebra kG with semi-dihedral or generalized quaternion defect groups and precisely two isomorphism classes of simple B-modules.

Determine all finitely generated kG-modules V which belong to B and whose endomorphism ring is isomorphic to k.
Let k be an algebraically closed field of characteristic 2.

Let G be a finite group and let B be a block of the group algebra kG with semi-dihedral or generalized quaternion defect groups and precisely two isomorphism classes of simple B-modules.

Determine all finitely generated kG-modules V which belong to B and whose endomorphism ring is isomorphic to k.

First calculate the universal deformation ring modulo 2 and then calculate the universal deformation ring $R(G, V)$ for each of these modules.
Definitions and Background

Let k be an algebraically closed field of positive characteristic p.

Let G be a finite group.

Let kG be the group algebra of G with coefficients in k.

All modules will be finitely generated left modules.
Universal Deformation Rings

Let V be a finitely generated kG-module.

Let $\hat{\mathcal{C}}$ be the category of all complete local commutative Noetherian rings with residue field k where the morphisms are the homomorphisms of complete local rings inducing the identity on k.

Let $R \in Ob(\hat{\mathcal{C}})$.

Schaefer with Bleher and Llosent
Definition:

(i) A lift of V over R is a finitely generated RG-module M which is free over R together with a kG-module isomorphism $\phi : k \otimes_R M \rightarrow V$. Notation: (M, ϕ).
Definition:

(i) A lift of V over R is a finitely generated RG-module M which is free over R together with a kG-module isomorphism $\phi : k \otimes_R M \rightarrow V$. Notation: (M, ϕ).

(ii) Two lifts (M, ϕ) and (M', ϕ') are isomorphic if there exists an RG-module isomorphism $f : M \rightarrow M'$ with $\phi' \circ (id \otimes f) = \phi$.
Definition:

(i) A lift of V over R is a finitely generated RG-module M which is free over R together with a kG-module isomorphism $\phi : k \otimes_R M \longrightarrow V$. Notation: (M, ϕ).

(ii) Two lifts (M, ϕ) and (M', ϕ') are isomorphic if there exists an RG-module isomorphism $f : M \longrightarrow M'$ with $\phi' \circ (id \otimes f) = \phi$.

(iii) A deformation of V over R is an isomorphism class of a lift (M, ϕ) of V over R. Notation: $[(M, \phi)]$.

Schaefer with Bleher and Llosent

UDRs and tame blocks with two simple modules
Theorem: (Mazur; Bleher-Chinburg) Suppose $\text{End}_{kG}(V) \cong k$. Then there exists an $R(G, V)$ in \hat{C} and a lift $(U(G, V), \phi_U)$ of V over $R(G, V)$ such that for all $A \in \hat{C}$ and for all lifts (M, ϕ) of V over A, there exists a unique $\alpha : R(G, V) \longrightarrow A$ in \hat{C} such that the lift (M, ϕ) is isomorphic to the lift $(A \otimes_{R(G, V)} \alpha U(G, V), \phi')$ where ϕ' is the composition $k \otimes_A (A \otimes_{R(G, V)} \alpha U(G, V)) \cong k \otimes_{R(G, V)} U(G, V) \xrightarrow{\phi_U} V$. The pair $(R(G, V), [(U(G, V), \phi_U)])$ is unique up to isomorphism.
Definition:

The ring $R(G, V)$ is called the universal deformation ring of V.

$[(U(G, V), \phi_U)]$ is called the universal deformation of V over $R(G, V)$.
Let \(W = W(k) \) be the ring of infinite Witt vectors over \(k \).

Since \(k \) is assumed to be algebraically closed of characteristic \(p \), \(W \) is the unique (up to isomorphism) complete discrete valuation ring with residue field \(k \) such that \(p \) generates the maximal ideal.

Ex. \(k = \mathbb{F}_p \) implies \(W = \text{completed } p\text{-adic integers} \)
Theorem: (Mazur)

(i) If $\dim_k(\text{Ext}_{kG}^1(V, V)) = m$, then there exists a surjective homomorphism $\Phi : W[[t_1, t_2, \ldots, t_m]] \twoheadrightarrow R(G, V)$ in \hat{C}, and m is minimal with this property.

(ii) If $\dim_k(\text{Ext}_{kG}^2(V, V)) = s$, then s is an upper bound for the minimal number of generators for $\text{Ker}(\Phi)$.
Theorem: (Mazur)

(i) If $\dim_k(\text{Ext}^1_{kG}(V, V)) = m$, then there exists a surjective homomorphism $\Phi : W[[t_1, t_2, ..., t_m]] \to R(G, V)$ in \hat{C}, and m is minimal with this property.

(ii) If $\dim_k(\text{Ext}^2_{kG}(V, V)) = s$, then s is an upper bound for the minimal number of generators for $\text{Ker}(\Phi)$.

Schaefer with Bleher and Llosent
UDRs and tame blocks with two simple modules
For the remainder of this talk, we assume \(\text{char}(k) = 2 \).

Let \(G \) be a finite group and let \(B \) be a block of the group algebra \(kG \) such that \(B \) has semi-dihedral or generalized quaternion defect groups and precisely two isomorphism classes of simple modules.

Then \(B \) is Morita equivalent to the algebra \(SD(2A)_1, SD(2A)_2, SD(2B)_1, SD(2B)_2 \), or \(SD(2B)_3 \) if \(B \) has semi-dihedral defect groups or to the algebra \(Q(2A), Q(2B)_1, \) or \(Q(2B)_2 \) if \(B \) has generalized quaternion defect groups. [Erdmann]
SEMI-DIHEDRAL DEFECT GROUPS

Let $SD(2A)_1$ be the finite dimensional k-algebra with quiver

\[
Q = \begin{array}{cc}
\alpha & \beta \\
0 & \gamma & 1
\end{array}
\]

and relations

\[
\alpha^2 = c(\gamma \beta \alpha)^t, \quad \beta \gamma \beta = \beta \alpha (\gamma \beta \alpha)^{t-1}, \\
\gamma \beta \gamma = \alpha \gamma (\beta \alpha \gamma)^{t-1}, \text{ and } \alpha (\gamma \beta \alpha)^t = 0
\]

where $t \geq 2$, $t = 2^{n-1}$ and $c \in k$.

Schaefer with Bleher and Llosent

UDRs and tame blocks with two simple modules
There are two simple $SD(2A)_1$-modules corresponding to the vertices 0 and 1 which we denote by S_0 and S_1, and there are two indecomposable projective $SD(2A)_1$-modules up to isomorphism, which can be described using the following diagrams:

$$P_0 = \begin{array}{c}
0 \\
0 \\
1 \\
0 \\
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array} \quad \text{and} \quad P_1 = \begin{array}{c}
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}$$

where the line $*$ and $**$ in P_0 corresponds to the relation $\alpha^2 = c(\gamma\beta\alpha)^t$ and $\beta\gamma\beta = \beta\alpha(\gamma\beta\alpha)^{t-1}$, respectively.
Let $SD(2A)_2$ be the finite dimensional k-algebra with quiver

$$Q = \begin{array}{c}
\bullet \\
\alpha \leftarrow \beta \\
\gamma \\
0 \quad 1
\end{array}$$

and relations

$$\alpha^2 = \gamma \beta (\alpha \gamma \beta)^{t-1} + c(\gamma \beta \alpha)^t, \ (\alpha \gamma \beta)^t = (\gamma \beta \alpha)^t, \text{ and } \beta \gamma = 0$$

where $t \geq 2$, $t = 2^{n-2}$ and $c \in k$.
There are two simple $SD(2A)_2$-modules corresponding to the vertices 0 and 1 which we denote by S_0 and S_1, and there are two indecomposable projective $SD(2A)_2$-modules up to isomorphism, which can be described using the following diagrams:

\[
\begin{array}{c}
\begin{array}{c}
0 \\
0 \\
1 \\
* \\
0 \\
0 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}
\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
0 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}
\end{array}
\]

and

\[
\begin{array}{c}
\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
1 \\
0
\end{array}
\begin{array}{c}
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}
\end{array}
\]

where the line $*$ in P_0 corresponds to the relation
\[\alpha^2 = \gamma\beta(\alpha\gamma\beta)^{t-1} + c(\gamma\beta\alpha)^t.\]
Let $SD(2B)_1$ be the finite dimensional k-algebra with quiver

$$Q = \begin{array}{c}
\circlearrowleft \alpha \rightarrow \bullet \rightarrow \beta \\
\circlearrowleft \circlearrowleft \gamma \leftarrow \eta \\
\end{array}$$

and relations

$$\eta \beta = 0 = \gamma \eta = \beta \gamma, \quad \alpha^2 = \gamma \beta + c(\gamma \beta \alpha), \quad \gamma \beta \alpha = \alpha \gamma \beta, \quad \beta \alpha \gamma = \eta^t$$

where $t \geq 2$, $t = 2^{n-2}$, and $c \in k$.
There are two simple $SD(2B)_1$-modules corresponding to the vertices 0 and 1 which we also denote by S_0 and S_1, and there are two indecomposable projective $SD(2B)_1$-modules up to isomorphism, which can be described using the following diagrams:

$$P_0 = \begin{array}{ccc}
0 & \ast & 1 \\
1 & 0 & \multicolumn{1}{c}{} \\
0 & \multicolumn{1}{c}{} & \multicolumn{1}{c}{}
\end{array} \quad \text{and} \quad P_1 = \begin{array}{ccc}
0 & 1 & \\
0 & 1 & \multicolumn{1}{c}{} \\
0 & \multicolumn{1}{c}{} & \multicolumn{1}{c}{}
\end{array}$$

where the line \ast in P_0 corresponds to the relation $\alpha^2 = \gamma\beta + c(\gamma\beta\alpha)$.

Schaefer with Bleher and Llosent
Let $SD(2B)_2$ be the finite dimensional k-algebra with quiver

$$Q = \begin{array}{c}
\circlearrowleft \\
0 \leftrightarrow 1
\end{array} \quad \begin{array}{c}
\alpha \\
\beta \\
\gamma \\
\eta
\end{array}$$

and relations

$$
\eta^2 \beta = 0 = \gamma \eta^2, \quad \alpha^2 = c(\gamma \beta \alpha)^2, \quad \beta \gamma = \eta^{t-1},
\gamma \eta = \alpha \gamma (\beta \alpha \gamma), \quad \eta \beta = \beta \alpha (\gamma \beta \alpha)
$$

where $t \geq 4$, $t = 2^{n-2}$, and $c \in k$.

Schaefer with Bleher and Llosent

UDRs and tame blocks with two simple modules
There are two simple $SD(2B)_2$-modules corresponding to the vertices 0 and 1 which we also denote by S_0 and S_1, and there are two indecomposable projective $SD(2B)_2$-modules up to isomorphism, which can be described using the following diagrams:

\[P_0 = \begin{array}{c}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
1
\end{array} \quad \text{and} \quad P_1 = \begin{array}{c}
0 \\
0 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0 \\
1
\end{array} \]

where the lines \ast and $\ast\ast$ in P_0 corresponds to the relations $\alpha^2 = c(\gamma\beta\alpha)^2$ and $\eta\beta = \beta\alpha(\gamma\beta\alpha)$ and the lines \bullet and $\bullet\bullet$ in P_1 corresponds to the relations $\beta\gamma = \eta^{t-1}$ and $\gamma\eta = \alpha\gamma(\beta\alpha\gamma)$, respectively.
Let $SD(2B)_3$ be the finite dimensional k-algebra with quiver

$$Q = \begin{array}{c}
\alpha \circlearrowleft \\
\downarrow \beta \\
\circlearrowright \eta \\
\downarrow \gamma \\
0 \\
\end{array}$$

and relations

$$
\begin{align*}
\alpha^2 &= \gamma \beta, \\
\beta \alpha &= \eta \beta, \\
\gamma \eta &= \alpha \gamma, \\
\beta \gamma &= \eta^2 + c \eta^{t+1}, \\
\beta \alpha^t &= \alpha^t \gamma = \alpha^{t+2} = \eta^{t+2} = 0, \\
\gamma \eta^t &= \eta^t \beta = 0
\end{align*}
$$

where $t \geq 2$, $t = 2^{n-2} - 1$, and $c \in k$ [Holm].
There are two simple $SD(2B)_3$-modules corresponding to the vertices 0 and 1 which we also denote by S_0 and S_1, and there are two indecomposable projective $SD(2B)_3$-modules up to isomorphism, which can be described using the following diagrams:

$$
P_0 = \begin{array}{c}
0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
\cdots & \cdots & \cdots \\
0 & 0 & 1 \\
0 & 1
\end{array}$$

and

$$
P_1 = \begin{array}{c}
1 \\
0 & 0 & * & 1 \\
0 & 0 & 1 \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 1 \\
0 & 1
\end{array}$$

where the line $*$ in P_1 corresponds to the relation $\beta \gamma = \eta^2 + c\eta^{t+1}$.

Schaefer with Bleher and Llosent
GENERALIZED QUATERNION DEFECT GROUPS

Let $Q(2A)$ be the finite dimensional k-algebra with quiver

$$Q = \begin{array}{c}
\circ \xrightarrow{\alpha} \circ \xleftarrow{\beta} \circ \\
0 \xleftarrow{\gamma} 1
\end{array}$$

and relations

$$\alpha^2 = \gamma \beta (\alpha \gamma \beta)^{s-1} + c(\alpha \gamma \beta)^s, \quad \beta \gamma \beta = \beta \alpha (\gamma \beta \alpha)^{s-1},$$

$$\gamma \beta \gamma = \alpha \gamma (\beta \alpha \gamma)^{s-1}, \quad \beta \alpha^2 = 0$$

where $s \geq 2$, $s = 2^{n-1}$ and $c \in k$.

Schaefer with Bleher and Llosent
UDRs and tame blocks with two simple modules
There are two simple $Q(2A)$-modules corresponding to the vertices 0 and 1 which we denote by S_0 and S_1, and there are two indecomposable projective $Q(2A)$-modules up to isomorphism, which can be described using the following diagrams:

$$P_0 = \begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}$$

and

$$P_1 = \begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}$$

where the line * and ** in P_0 corresponds to the relations

$$\alpha^2 = \gamma \beta (\alpha \gamma \beta)^{s-1} + c (\alpha \gamma \beta)^s \quad \text{and} \quad \beta \gamma \beta = \beta \alpha (\gamma \beta \alpha)^{s-1},$$

respectively.
Let $Q(2B)_1$ be the finite dimensional k-algebra with quiver

$$Q = \begin{array}{c}
\bullet \\
\begin{array}{c}
\alpha \\
\beta \\
\gamma \\
\eta
\end{array}
\end{array}
$$

and relations

$$\alpha^2 = \gamma \beta (\alpha \gamma \beta) + c (\alpha \gamma \beta)^2, \ \eta \beta = \beta \alpha (\gamma \beta \alpha),$$

$$\beta \gamma = \eta^{s-1}, \ \gamma \eta = \alpha \gamma (\beta \alpha \gamma), \ \beta \alpha^2 = 0$$

where $s \geq 4$, $s = 2^{n-2}$, and $c \in k$.
There are two simple $Q(2B)_1$-modules corresponding to the vertices 0 and 1 which we also denote by S_0 and S_1, and there are two indecomposable projective $Q(2B)_1$-modules up to isomorphism, which can be described using the following diagrams:

\[
P_0 = \begin{array}{cccc}
0 & \ast & \ast & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
\end{array}
\quad \text{and} \quad
P_1 = \begin{array}{cccc}
0 & \bullet & \bullet & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
\end{array}
\]

where the lines \ast and $\ast\ast$ in P_0 corresponds to the relations $\alpha^2 = \gamma\beta(\alpha\gamma\beta) + c(\alpha\gamma\beta)^2$ and $\eta\beta = \beta\alpha(\gamma\beta\alpha)$ and the lines \bullet and $\bullet\bullet$ in P_1 corresponds to the relations $\beta\gamma = \eta^{s-1}$ and $\gamma\eta = \alpha\gamma(\beta\alpha\gamma)$, respectively.
Let $Q(2B)_2$ be the finite dimensional k-algebra with quiver

$$Q = \begin{array}{c}
\bullet \\
\alpha
\end{array} \xrightarrow{\beta} \begin{array}{c}
\bullet \\
\eta
\end{array} \xleftarrow{\gamma} \begin{array}{c}
\bullet \\
\gamma
\end{array}$$

and relations

$$\beta\alpha = \eta\beta, \quad \gamma\eta = \alpha\gamma, \quad \gamma\beta = \alpha^2 + \alpha^3 q(\alpha),$$
$$\beta\gamma = \eta^2 + \eta^3 q(\eta) + a\eta^{s-1} + c\eta^s, \quad \alpha^{s+1} = 0 = \eta^{s+1},$$
$$\alpha^{s-1}\gamma = 0 = \beta\alpha^{s-1}$$

where $q(t) \in k[t], \ s \geq 4, \ s = 2^{n-2}, \ a, c \in k$ and $a \neq 0$.
There are two simple $Q(2B)_2$-modules corresponding to the vertices 0 and 1 which we also denote by S_0 and S_1, and there are two indecomposable projective $Q(2B)_2$-modules up to isomorphism, which can be described using the following diagrams:

$P_0 = \begin{array}{cccc}
0 & \star & 1 \\
0 & 0 & 1 \\
\vdots & \vdots & \vdots \\
0 & 0 & 1 \\
0 & 0 & \end{array}$ \quad \text{and} \quad
P_1 = \begin{array}{cccc}
0 & \bullet & 1 \\
0 & 0 & 1 \\
\vdots & \vdots & \vdots \\
0 & 0 & 1 \\
0 & 0 & \end{array}$

where the line \star in P_0 and \bullet in P_1 corresponds to the relations

$\gamma \beta = \alpha^2 + \alpha^3 q(\alpha)$ and $\beta \gamma = \eta^2 + \eta^3 q(\eta) + a \eta^{s-1} + c \eta^s$,

respectively.
Modules with Endomorphism Rings Isomorphic to k

Theorem (BLS): Let Λ be $Q(2A)$. Let M be a Λ-module. Then $\text{End}_\Lambda(M) \cong k$ if and only if

$$M \in \{ S_0, S_1, \begin{array}{cc} S_0 & S_1 \\ S_1 & S_0 \end{array}, \begin{array}{cc} S_0 & S_1 \\ S_0 & S_0 \end{array}, \begin{array}{cc} S_0 & S_1 \\ S_1 & S_0 \end{array} \}.$$
Sketch of proof:

Case (i) Radical length is 1: S_0, S_1
Sketch of proof:

Case (i) Radical length is 1: \(S_0, S_1 \)

Case (ii) Radical length is 2:

\[
\begin{array}{ccccccccc}
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0' & 1' & 0' & 0 & 1' & 0' & 0 & 1 \\
\end{array}
\]
Case(iii) Radical length is 3:
Case(iii) Radical length is 3:

a) Suppose $\text{top}(M)$ is a direct sum of copies of S_1:

\[
\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
0, 0, 0, 1, 0, 1, 0 & 0, 1, 0, 0, 1, 0, 1 \\
0, 1, 0, 0, 1, 0, 1, 0, 1 & 0, 1, 0, 0, 1, 0, 1, 0, 1
\end{array}
\]
b) Suppose $\text{top}(M)$ is a direct sum of copies of S_0: $0, 0, 1, 1$.
Case(iv) Radical length is greater than 3: Consider $M / \text{rad}^3(M)$ and $\text{soc}_3(M)$.

a) Suppose $\text{top}(M)$ is a direct sum of copies of S_1 and $\text{soc}(M)$ is a direct sum of copies of S_0.

b) Suppose $\text{top}(M)$ is a direct sum of copies of S_0 and $\text{soc}(M)$ is a direct sum of copies of S_1.
Case (iv) Radical length is greater than 3: Consider $M/\text{rad}^3(M)$ and $\text{soc}_3(M)$.

a) Suppose $\text{top}(M)$ is a direct sum of copies of S_1 and $\text{soc}(M)$ is a direct sum of copies of S_0.
Case (iv) Radical length is greater than 3: Consider $M/\text{rad}^3(M)$ and $\text{soc}_3(M)$.

a) Suppose $\text{top}(M)$ is a direct sum of copies of S_1 and $\text{soc}(M)$ is a direct sum of copies of S_0.

b) Suppose $\text{top}(M)$ is a direct sum of copies of S_0 and $\text{soc}(M)$ is a direct sum of copies of S_1.