FINE/COARSE MODULI SPACES

IN THE REPRESENTATION THEORY

OF FINITE DIMENSIONAL ALGEBRAS

A basic finite dim'l algebra \(k = \overline{k} \)

w.l.o.g., \(\Lambda = \overline{k} Q / I \) for a quiver \(Q \).

Vertices: \(Q_0 = \{ e_1, \ldots, e_n \} \),
identified w. primitive idempotents of \(\Lambda \).

\(J = \) Jacobson radical of \(\Lambda \),
\(S_i = \Lambda e_i \overline{J} e_i \) the simples in \(\Lambda\text{-mod} \)
WERE RIEMANN AROUND TO CONSULT US, THIS IS WHAT HE'D SAY (I THINK)

Starting point: \(\mathcal{C} \subseteq \Lambda\)-mod
class of objects

(1) Identify "suitable" discrete invariants of the modules in \(\mathcal{C} \) to subdivide \(\mathcal{C} \) into subclasses \(\mathcal{C}_i \).

(2) For each \(i \), find a variety \(V_i \) and a bijection

\[V_i \leftrightarrow \{ \text{iso classes in } \mathcal{C}_i \} \]

which "continuously" parametrizes the iso classes in \(\mathcal{C}_i \).

Hope:
- Geometry of \(V_i \) should reflect structural changes of modules in \(\mathcal{C}_i \).
- Parametrization should be "universal" in a suitable sense.
Tentative parametrizations of the \(\Lambda \)-modules w. dim vector \(d = (d_1, \ldots, d_n) \)

(I) classical affine: \(Q_1 = \) set of arrows.

\[
\text{Rep}(\Lambda, d) = \left\{ x = (x_{ij})_{i,j \in Q} \mid x_{ij} \in \text{Hom}_K(K^{d_i}, K^{d_j}) \text{ for } \alpha : i \to j, \text{ the } x_{ij} \text{ satisfy the relations in } I \right\}
\]

Have morphic action of the reductive algebraic group \(GL(d) = \prod_{i \in \mathbb{Z}} GL(d_i) \).

\[\text{1-1 correspondence} \]

\[
\{ \text{GL}(d) \text{-orbits of } \text{Rep}(\Lambda, d) \} \leftrightarrow \left\{ \text{iso classes of } M \in \Lambda \text{-mod w. dim } M = d \right\}
\]
Projective parametrization of the same objects

\(P = \text{projective cover of } \bigoplus_{i \in \mathbb{N}} S_i^{d_i} \),

\(d' = \dim P - 1 \cdot d \)

\[\text{GRASS}(\Lambda, d) = \left\{ C \in \text{Gr}(d', P) \mid \begin{array}{c}
\forall C \in \bigwedge \text{submodule} \\
\dim P/C = d
\end{array} \right\} \]

a projective variety.

Obvious action of the algebraic group \(\text{Aut}_\Lambda(P) \) : \(g \cdot C = g(C) \)

\(\rightarrow 1-1 \) correspondence

\[\left\{ \text{Aut}_\Lambda(P)\text{-orbits of GRASS}(\Lambda, d) \right\} \leftrightarrow \left\{ \text{iso classes of } M \in \Lambda\text{-mod } \dim M = d \right\} \]

\(\text{Aut}_\Lambda(P). C \mapsto P/C \)
Situation: Linear algebraic group \(G \) acts morphically on \(V \) (variety).

Categorical quotient of \(V \) by \(G \):
A morphism \(\phi : V \to V//G \)
which is constant on \(G \)-orbits, such that any morphism \(V \to \text{variety} \)
with this property factors uniquely through \(\phi \).

Orbit space: \(\phi : V \to V//G \)
as before such that
fibers of \(\phi = G \)-orbits of \(V \).

Geometric quotient: orbit space \(\phi \), open morphism such that, for
open \(U \subseteq V//G \), \(\mathcal{O}(\phi^{-1}(U))^G \cong \mathcal{O}(U) \).

naturally
AN IDEA: It looks hopeless, but has potential at 2nd (or 3rd) glance.

Factor the group action out of the parametrizing variety to obtain a variety whose points are in bijection with the iso classes of modules we want to classify.

Major cliff: This results in a (Zariski) topological quotient but not in a variety, in general.
COMPARING OUR PARAMETRIZATIONS

Good transfer of geometric info
[Bongartz - H Z]:

\[
\begin{align*}
&\{\text{GL}(d)\text{-stable subsets of} \ \text{Rep}(\Lambda, d)\} \\
&\leftrightarrow \{\text{Aut}_\Lambda(P)\text{-stable subsets of} \ \text{GRASS}(\Lambda, d)\} \\
&\text{(GL}(d)\text{-orbit of) } \\
&\text{(Aut}_\Lambda(P)\text{-orbit of) } \\
&\text{(module M) } \\
&\text{(the same M) }
\end{align*}
\]

Suppose \(V \subseteq \text{Rep}(\Lambda, d) \) is a \(\text{GL}(d) \)-stable subvariety, and \(W = \psi(V) \) the corresponding subvariety of \(\text{GRASS} \).

\[\exists \text{Rep}(\Lambda, d)/\text{GL} \leftrightarrow \exists \text{GRASS}(\Lambda, d)/\text{Aut} \]

orbit space \leftrightarrow \text{orbit space}

geometric quotient \leftrightarrow \text{geometric quotient}
WE KNOW WHAT WE WANT:

$GL(d)$-stable subvariety V of $Rep(\Lambda, d)$ (resp. $Aut(x)$-stable subvariety V of $\text{GRASS}(\Lambda, d)$) which admits (at least) an orbit space modulo the pertinent action.

CRUX: (Relatively) closed orbits are a necessary condition for this wish to come true.
(I) **Affine parametrization**

$GL(d)$ is a reductive group acting on the affine variety $Rep(\Lambda, d)$. Hence: If $R = \text{coordinate ring of } Rep(\Lambda, d)$, then the invariant ring R^{GL} is a fin. gen. K-algebra &

$\text{Spec}(R^{GL}) = \text{Rep}(\Lambda, d) // GL(d)$.

Looks better than it is: $R^{GL} \cong K$, so $\text{Spec}(R^{GL})$ is a singleton.

Trouble: $Rep(\Lambda, d)$ contains only a single closed orbit.
(II) Projective parametrization

Acting group:
\[\text{Aut}_\Lambda(P) \cong \text{Aut}_\Lambda(P/JP) \times U, \]
where \(U = \{ \text{id} + f \mid f \in \text{Hom}_\Lambda(P, JP) \} \) is a unipotent subgroup.

Rosenlicht: Action of a unipotent group on an affine variety has closed orbits.

How to benefit? \exists U-stable affine cover of GRASS(\(\Lambda, d \)), which is representation-theoretically defined.

This fact will guide our hand in selecting amenable Aut_\Lambda(P)-stable subvarieties of GRASS(\(\Lambda, d \)).
"Continuity" of a parametrization of modules by a variety is made precise by the concept of a "family".

DEF. [King] A family of \(L \)-modules with dim-vector \(d \), parametrized by a variety \(X \), is a rank-1 \(d \)\(\times 1 \) vector bundle \(\Delta \) over \(X \) together with a \(k \)-algebra homomorphism \(s: \Lambda \rightarrow \text{End}(\Delta) \).

Family induced from \((\Delta, s)\): Let \(\tau: Y \rightarrow X \) be a morphism, \(\tau^*(\Delta) \) the pullback bundle. The bundle \(\tau^*(\Delta) \) over \(Y \) comes with induced alg. homomorphism \(\Lambda \rightarrow \text{End}(\tau^*(\Delta)) \).
FINN: A fine moduli space for a class C of d-dim'l Λ-modules is a variety X that parametrizes a family Δ of modules in C endowed with the following universal property:

Whenever Δ' is a family of modules in C, parametrized by X' say, \(\exists ! \) morphism $\tau: X' \to X$ with $\Delta' \cong \tau^*(\Delta)$

means: $\forall x' \in X'$, the fiber of Δ' above x' is isomorphic, as a Λ-module, to the fiber of $\tau^*(\Delta)$ above x'.
COARSE: Still $\mathcal{C} \subseteq \Lambda$-mod.

Let $\text{Rep}(\mathcal{C})$ be the union of the $\text{GL}(d)$-orbits in $\text{Rep}(\Lambda, d)$ of the modules in \mathcal{C}.

Let $\text{GRASS}(\mathcal{C})$ be the union of the $\text{Aut}_\Lambda(P)$-orbits of these modules in $\text{GRASS}(\Lambda, d)$.

A variety X is a coarse moduli space for \mathcal{C} if

$$X \cong \text{Rep}(\mathcal{C})//\text{GL}(d)$$

is an orbit space;

or equivalently, if

$$X \cong \text{GRASS}(\mathcal{C})//\text{Aut}_\Lambda(P)$$

is an orbit space.
DICHOTOMY OF METHODS IN
RESTRICTING TO CLASSES $C \subseteq \text{mod}$
WHICH ADMIT MODULI SPACES

(I) Working with $\text{Rep}(\Lambda, \delta)$

King's adaptation of GIT

Idea: Deal with lack of closed orbits by passing to subvarieties of $\text{Rep}(\Lambda, \delta)$ in which more orbits become closed.

This works best for path algebras without relations, so let us assume $\Lambda = \kappa \mathbb{Q}$.
Some Detail on King's Approach

If $\Lambda = K Q$, then $\text{Rep}(\Lambda, \Omega)$ is a finite dimensional vector space, and the $\text{GL}(\Omega)$-action is linear. Let R be the coordinate ring of $\text{Rep}(\Lambda, \Omega)$ and $\chi: \text{GL}(\Omega) \to K$ a character (identifiable with a map $Q_0 \to \mathbb{Z}$).

The χ-semi-invariants:

$R_\chi^\infty := \{ f \in R \mid f(g, x) = \chi(g) f(x) \forall x, g \}$

Replace $\text{Spec}(R G)$ by Proj of the graded ring $\bigoplus_{n \geq 0} R_\chi^n$, and cut down $\text{Rep}(\Lambda, \Omega)$ to

$\text{Rep}^\text{ss} = \{ x \in \text{Rep}(\Lambda, \Omega) \mid \exists n \geq 1, f \in R_\chi^n \text{ with } f(x) \neq 0 \}$

the Θ-semistable points
King's GIT-Based Theorem

Given \(\Theta : \mathbb{Q}_0 \to \mathbb{Z} \) (extend to \(\mathbb{Z} \mathbb{Q}_0 \)). This yields a character \(\chi \) of \(\text{GL}(d) \).

Theorem. Part 1. Suppose \(\Theta(d) = 0 \).

- The \(\chi \)-semistable points in \(\text{Rep}(\Lambda, d) \) correspond to the modules \(M \) (\(\Theta \)-semistable) characterized by
 \[
 \Theta(\dim U) \geq 0 \quad \forall U \subseteq M.
 \]
- The \(\Theta \)-ss \(\Lambda \)-modules form an abelian subcategory of \(\Lambda \)-mod with Jordan-Hölder series.

- The \(\Theta \)-ss \(\Lambda \)-modules have a coarse moduli space, classifying them up to \(S \)-equivalence. [S for Seshadri]

\(M \sim M' \) \(\iff \) \(M, M' \) have the same simple composition factors in the category of \(\Theta \)-ss modules.
What are the simple objects in the category of Θ-ss modules?

Theorem. Part 2.

Answer: The Θ-ss modules satisfying: $\Theta(u) = 0 \Rightarrow u \in \{0, M\}$

\[\forall u \in \{0, M\} \]

Call them the Θ-stable modules.

* If d is indivisible, the Θ-stable modules have a fine moduli space classifying them up to \cong.

Remark. "All this" generalizes to the non-hereditary case $A = \text{KQ}/\mathcal{I}$. It's just hard to make use of it in general.
A good choice of θ for local modules if \mathcal{Q} is acyclic

\mathcal{Q} acyclic, $T = S$, simple, $\mathcal{V} = \mathcal{Q}A$. Use module with top...

Define $\theta: Q_0 \to \mathbb{Z}$ via

$\theta(e_i) = 1$ for $i \geq 2$ and

$\theta(e_1) = -\sum_{i=2}^{n} d_i$. Then the local \mathcal{V}-modules w. top T and dim vector d are θ-stable.

Corollary: These local modules have a fine moduli space, classifying them up to iso.
PLUSES & MINUSES OF APPROACH(I)

+ : • Existence of coarse/fine moduli spaces guaranteed by GIT.
 • Since method was very effective for vector bundles of curves, a large arsenal of methods for analyzing the resulting moduli spaces has been established.
 • Semi-invariants of Rep(N, φ) very interesting in their own right.

- : • Finding "good" Θ's difficult; set of semistable points may be ∅.
 • Θ-(semi-)stability may be hard to interpret in structural terms;
 5-equivalence hard to pin down representation-theoretically.
ADDRESSING THESE PROBLEMS

\[\Lambda = \mathbb{K} \mathcal{O} \quad \text{(most accessible case)} \]
\[\Theta : \mathcal{O} \to \mathbb{Z} \quad \text{given.} \]

Known [King, Reineke, Schofield, Harder, Narasimhan]

- \(M \) \(\Theta \)-stable \(\Rightarrow \) \(\text{End}_\Lambda (M) = \mathbb{K} \)

- But: Given \(d \), there is in general no choice of \(\Theta \) such that all \(M \) with \(\dim M = d \) and \(\text{End}_\Lambda (M) = \mathbb{K} \) are \(\Theta \)-stable.

- There is a recursive procedure for deciding whether there are \(\Theta \)-semistable \(\Lambda \)-modules with \(\dim \) vector \(d \).
Slicing \(\text{GRASS}(n, d) \) in Terms of TOPS

Idea: Use the benefits of unipotent group actions to better effect by restricting the focus to modules \(M \) with fixed top \(T = M/JM \).

Intuitive reason for expected gain

We want to understand when the \(\text{Aut}_n(P) \)-orbits are relatively closed in suitable subvarieties of \(\text{GRASS}(n, d) \).

\[\text{Aut}_n(P) \cong U \times \text{Aut}_n(P/JP), \]

and the action of \(U \) is easier to analyze than that of \(\text{Aut}_n(P/JP) \). Hence we want to make the latter group as small as possible by cutting down on \(P \), at the expense of obtaining fewer modules as factor modules.
HERE 'SMALL' IS 'BETTER'

THE RESTRICTED MODULE GRASSMANNIAN

Given: \(d = (d_1, \ldots, d_n) \), \(T \in \Lambda\text{-mod} \) semisimple, \(P \) projective cover of \(T \).

Set \(d' = \dim P - |d| \), and consider \(\text{Grass}_T^d := \{ c \in \text{Gr}(d', P) \mid \lambda C \subseteq \lambda P, \dim \frac{P}{C} = d \} \) with the canonical action of \(\text{Aut}_\lambda (P) \).

Then the \(\text{Aut}_\lambda (P) \)-orbits are in 1-1 correspondence with the isomorphism classes of \(\Lambda\text{-modules} \) \(M \) with \(\dim M = d \) and \(M/\lambda M \cong T \).

The acting group: \(\text{Aut}_\lambda (P) \cong U \times \text{Aut}_\lambda (T) \) with \(U = \{ \text{id}_P + f \mid f \in \text{Hom}_\lambda (P, \lambda P) \} \).
let \(M = \mathbb{P}/c \) with \(c \in \text{Grass}_d^T \),
and suppose \(J^{d+1} = 0 \). Then
\[
S(M) = \left(\frac{M}{J^i M}, \frac{J M}{J^2 M}, \ldots, \frac{J^d M}{J^d M} \right)
\]
is a sequence of semisimple modules with \(M/J M = T \).

For any sequence \(S = (S_0, \ldots, S_L) \) of semisimple modules w. \(S_0 = T \)
and \(\dim S = d \), define
\[
\text{Grass}(S) = \{ c \in \text{Grass}_d^T \mid S(\mathbb{P}/c) = S \}.
\]
Then all \(U \)-orbits are (relatively) closed in \(\text{Grass}(S) \).
SHOOTING FOR ALL MODULES WITH
TOP T & $\dim d$

Thm [H2] Suppose T is squarefree, P its projective cover. Then TFAE:

- The d-dim'l modules with top T have a fine moduli space (up to iso).
- The d-dim'l modules with top T have a coarse moduli space (up to iso).
- The $(\dim P - d)$-dimensional submodules of JP are invariant under endomorphisms of P.
- $\text{Ograss}_d^T = \bigcup_{\text{dim}=d} \text{Ograss}_d$ is the fine moduli space for the d-dim'l modules with top T.

Cor. [cf King] $T = \Lambda E / J E$ simple, $E J P \subseteq \text{soc } P \Rightarrow$ the equivalent conditions above are satisfied.
Example

\[\begin{array}{ccc}
& 1 & \\
3 & \xrightarrow{3} & 2 & \xrightarrow{1} & 3 \\
& \downarrow & & \downarrow \\
& \beta & & \beta \\
\end{array} \]

\[\Lambda = \mathbb{K} \Lambda / \langle \text{paths of length 4} \rangle, \]
\[T = S_1, \quad \lambda = (2, 3, 2). \]

The fine moduli space for the \(\Lambda \)-modules with top \(T \) and dim vector \(\lambda \) is \(\text{Grass}^T_{\lambda} \approx \text{Flag} (\mathbb{K}^4). \)

Visualization:

Generic \(M \in \text{Grass}^T_{\lambda} \)
SHOOTING FOR THE GRADED MODULES
WITH TOP T & dim d

joint with Babson and Thomas

$\Lambda = kQ/I$, $I \subseteq kQ$ homogeneous

Thm. Here "graded" includes "generated in deg 0".

(a) For any simple T and $d \in \mathbb{N}$,
the d-dim' graded modules with top T have a fine moduli
space (classifying up to graded iso), namely

$$\bigcup_{d \mid d = \ell} \text{Gr} - \text{Grass}^T_d$$

(b) So do direct sums of local graded modules w. fixed dimensions of the
local summands.

THAT'S AS FAR AS IT GOES.

(c) T arbitrary. If the d-dim' graded modules w. top T have
a coarse moduli space, then they are \oplus of local modules.
THREE EASY PIECES
(2 of them easier than Jack Nicholson's)

1. $J^2 = 0$, T simple, $d \in \mathbb{N}$.

Then the irreducible components of the fine moduli space

$$\text{Gr} - \text{Grass}_d^T = \text{Grass}_d^T$$

are direct products of classical Grassmann varieties $\text{Gr}(m; _1 K^n)$.

Idea: Say $T = \Lambda e_1 / je_1$.

Then $P = \Lambda e_1$ looks like this

```
1
1 2 3 ...
```

and the Λ-submodules of J^P coincide with the K-subspaces.
\[Q = 1 \begin{array}{c}\rightarrow \beta_1 \end{array} 2, \Lambda = \langle Q/\langle\text{paths of length 3}\rangle \rangle \]

\[T = S_1 \oplus S_2, \quad d = (2, 2) \]

Not all graded modules w. top \(T \) and \(\dim d \) are \(\oplus (\text{graded local}) \), but the graded modules with radical layering \(S = (S_1 \oplus S_2, S_2, S_1) \) are.

Thus they have a fine moduli space \(\text{Gr-OGress}(S) \equiv \mathbb{P}^1 \), corresponding to their normal forms

\[\begin{array}{c}\frac{1}{2} \end{array} \begin{array}{c}\oplus \end{array} \begin{array}{c}\frac{1}{2} \end{array} \]

\[A(\cdot \beta_2, \cdot) \]

By contrast, \(\text{OGress}(S) \equiv \mathbb{P}^1 \times \mathbb{P}^1 \) is not a moduli space for the ungraded modules.
3 Not quite so easy:

\[Q = \bigoplus_{l \geq 3} \mathbb{P}^{(2^l)} \otimes \mathcal{O}_{X^n} \]

\[\Lambda = \mathcal{U}_Q/\langle \text{all paths of length } L \rangle \]

\(T \) the simple \(\Lambda \)-module, \(\alpha \in \mathbb{N} \).

Then the irreducible components of the fine moduli space

\[\text{Gr-Op ass} \overline{T} \]

for the graded \(\alpha \)-dim\'l modules with top \(T \) are smooth and rational.
SHOOTING FOR THE MODULES WITHOUT PROPER TOP-STABLE DEGENERATIONS

joint with Derksen and Weyman

What are they?

They are the $M \in \mathcal{A}$-mod satisfying:

\[M \leq M', \ M \neq M' \Rightarrow \text{top}(M) \subsetneq \text{top}(M') \]

\[\text{degen} \]

Here $M \leq M'$ means: M' is a degener

degeneration of M, i.e.

\[\text{orbit}(M') \subseteq \text{orbit}(M) \]
Theorem. \(T \in \Lambda\)-mod semisimple (arbitrary)

- The modules with dimension vector \(d \) which are degeneration-maximal among those with top \(T \) have a fine moduli space, classifying them up to \(\cong \).

This space, \(\text{Moduli Max}_d^T \), is a projective variety \(\cong \text{Grass}^T_d \).

Satellite result [DHW/Hille]

Any projective variety occurs as \(\text{Moduli Max}_d^T \) for suitable \(\Lambda, T, d \) (even for simple \(T \)).
ANOTHER FACT & A PROBLEM

Fact: \(M \) with \(M/gM = T \) fixed.

The maximal top-stable degenerations of \(M \) have a fine moduli space, classifying up to \(\cong \).

This space is a closed subvariety

\[
\text{Moduli Max}_d^T(M) \subseteq \text{Moduli Max}_d^T.
\]

Question: Which projective varieties occur as \(\text{Moduli Max}_d^T(M) \) for fixed \(M \)?
Theorem (Normal forms for the modules at stake)

For $M \in \Lambda$-mod $T \neq AE$:

(1) M has no proper top-stable degeneration.

(2) $M = \bigoplus_{i=1}^{\infty} \bigoplus_{j=1}^{t_i} \Lambda e_i / C_{ij}$ for suitable $t_i > 0$ and $C_{ij} \subseteq \Lambda e_i$

such that $C_{i1} \subseteq C_{i2} \subseteq \ldots \subseteq C_{it_i}$, and:

(iii) If P is a projective cover of M, then $\dim \text{Hom}_\Lambda (P, JM) = \dim \text{Hom}_\Lambda (M, JM)$

means that first syzygy of M in P is invariant under all homomorphisms $P \rightarrow JP$
Example: We determine the irreducible components of $\text{Moduli}_\Omega^T (M)$ for a specific module M.

\[\lambda = KQ/I, \ I \text{ generated by paths as visible from } \Lambda e_1. \ T = 5. \]

\[\Lambda e_1 \]

\[\Lambda e_1/\mathcal{C} \]

\[M: \]

\[z_1 \]

\[z_2 \]

\[\alpha \beta \]

\[\omega_1 \omega_2 \omega_3 \omega_4 \omega_5 \omega_6 \]

\[1 \]

\[2 \]

\[1 \]
4 irreducible components $\mathcal{C}_1, \ldots, \mathcal{C}_4$. Generically, their modules look like this:

\mathcal{C}_1:

$\begin{align*}
\alpha & \quad \beta \\
2 & \quad 2
\end{align*}$

$\begin{align*}
\alpha & \quad \alpha \\
2 & \quad 2
\end{align*}$

$\begin{align*}
\alpha & \quad \beta \\
2 & \quad 2
\end{align*}$

$\begin{align*}
\omega_1 & \quad \omega_2 \\
1 & \quad 1
\end{align*}$

$\begin{align*}
\omega_3 & \quad \omega_4 \\
1 & \quad 1
\end{align*}$

$\begin{align*}
\omega_5 & \quad \omega_6 \\
1 & \quad 1
\end{align*}$

$\begin{align*}
[k : k : k] & \in \mathbb{P}^2
\end{align*}$

$\begin{align*}
[l : l : l] & \in \mathbb{P}^2
\end{align*}$

\mathcal{C}_2:

$\begin{align*}
\alpha & \quad \beta \\
2 & \quad 2
\end{align*}$

$\begin{align*}
\alpha & \quad \alpha \\
2 & \quad 2
\end{align*}$

$\begin{align*}
\alpha & \quad \beta \\
2 & \quad 2
\end{align*}$

$\begin{align*}
\omega_1 & \quad \omega_2 \\
1 & \quad 1
\end{align*}$

$\begin{align*}
\omega_3 & \quad \omega_4 \\
1 & \quad 1
\end{align*}$

$\begin{align*}
\omega_5 & \quad \omega_6 \\
1 & \quad 1
\end{align*}$

$\begin{align*}
[k : k : k] & \in \mathbb{P}^2
\end{align*}$

\mathcal{C}_3:

$\begin{align*}
\alpha & \quad \beta \\
2 & \quad 2
\end{align*}$

$\begin{align*}
\alpha & \quad \alpha \\
2 & \quad 2
\end{align*}$

$\begin{align*}
\alpha & \quad \beta \\
2 & \quad 2
\end{align*}$

$\begin{align*}
\omega_1 & \quad \omega_2 \\
1 & \quad 1
\end{align*}$

$\begin{align*}
\omega_3 & \quad \omega_4 \\
1 & \quad 1
\end{align*}$

$\begin{align*}
\omega_5 & \quad \omega_6 \\
1 & \quad 1
\end{align*}$

$\begin{align*}
[l : l : l'] & \in \mathbb{P}^2
\end{align*}$

\mathcal{C}_4:

$\begin{align*}
\alpha & \quad \beta \\
2 & \quad 2
\end{align*}$

$\begin{align*}
\alpha & \quad \alpha \\
2 & \quad 2
\end{align*}$

$\begin{align*}
\alpha & \quad \beta \\
2 & \quad 2
\end{align*}$

$\begin{align*}
\omega_1 & \quad \omega_2 \\
1 & \quad 1
\end{align*}$

$\begin{align*}
\omega_3 & \quad \omega_4 \\
1 & \quad 1
\end{align*}$

$\begin{align*}
\omega_5 & \quad \omega_6 \\
1 & \quad 1
\end{align*}$

$\begin{align*}
\omega_2 / \omega_6 & \\
1 & \quad 1
\end{align*}$

$\begin{align*}
\omega_3 & \quad \omega_4 \\
1 & \quad 1
\end{align*}$

$\begin{align*}
\omega_5 & \quad \omega_6 \\
1 & \quad 1
\end{align*}$

$\begin{align*}
1 & \quad 1
\end{align*}$

$\begin{align*}
1 & \quad 1
\end{align*}$

$\begin{align*}
1 & \quad 1
\end{align*}$

$\mathcal{C}_1 \cong \mathbb{P}^1 \times \mathbb{P}^1$, $\mathcal{C}_2 \cong \mathcal{C}_3 \cong \mathbb{P}^1$, $\mathcal{C}_4 \cong \mathbb{P}^0$
4 irreducible components $\mathcal{C}_1, \ldots, \mathcal{C}_4$. Generically, their modules look like this:

\mathcal{C}_1:

\mathcal{C}_2:

\mathcal{C}_3:

\mathcal{C}_4:

$\mathcal{C}_1 \cong \mathbb{P}^1 \times \mathbb{P}^1$, $\mathcal{C}_2 \cong \mathcal{C}_3 \cong \mathbb{P}^1$, $\mathcal{C}_4 \cong \mathbb{P}^0$
PLUSES & MINUSES OF APPROACH

+: We control the class of modules we are trying to classify (defined in representation-theoretic terms) as well as the equivalence relation, up to which we are classifying (usually \cong, or iso preserving additional structure).

-: In the above instances, the moduli spaces are "largely" computable and analyzable in terms of combinatorics of quiver & reln's.

-: Large classes of rep-theoretically defined modules "rarely" have moduli spaces. Existence proofs rely on ad-hoc methods, depending on the class of modules considered.

-: No "ready-made" arsenal available for analysis of resulting moduli spaces, existence provided.