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Spatial statistics on streams?

e Premise: Values of a variable occurring in or along a stream
network are as likely as Euclidean spatial data to obey Tobler’s
first law of spatial statistics (i.e., values from “nearby” sites
tend to be similar).

e Consequently, stream ecologists want to apply methods of spa-
tial statistics to address questions about the variable (e.g. to
estimate an average or total over a stream or stream segment,
make predictions at unsampled locations, estimate relation-
ships between the primary variable and other variables, ...).

e But a stream network is not a Euclidean space; does this mat-
ter? How much can we borrow or easily adapt from Euclidean
geostatistics?



Euclidean geostatistics and classical variography

e Geostatistical approach: regard the observed data as a sample
taken from one realization of Y (-) = {Y(s) : s € D}, where D

is a region in two-dimensional (usually) Euclidean space

e Common assumptions: Y () is intrinsically stationary and

isotropic, i.e., E[Y(-)] is constant across space and its semi-
variogram ¥(s,t) = FE[Y(s) — Y (t)]*> may be expressed as a

function of & = ||s — t|.

e Under second-order stationarity, y(h) = C(0) — C(h), where

C(-) is the covariance function.

e Modeling/estimation/characterization of the semivariogram is
known as variography, for which the main tool is the empiri-

cal semivariogram.



Empirical semivariogram

1 2
Y(hy) = Z (Y(Si)—Y(Sj)) , k=1,....K,
2NHL) 1o, len,
where Y (s1),...,Y(s,) are the observed data, A is a representative

distance (often the average or midrange) for a distance bin Hy, and
N(Hy) is the number of distinct site-pairs in Hj.



‘“typical” empirical semivariogram
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Diagnostic value of empirical semivariogram

The estimator is (approximately) unbiased

Can often discern a range, a sill, a nugget, and a shape that
informs semivariogram model selection

A chosen model may be fit by any of several methods (WLS,
REML)

Absence of a sill (i.e. unbounded increase) may be evidence
of trend contamination

Can compute and plot in several directions/subregions and
compare to assess isotropy/stationarity



Fluvial variography

e Applications of geostatistics to stream network variables date
back to 2003

e Many stream ecologists simply substituted Euclidean distance
in the semivariogram model with stream distance, i.e. distance
along the stream network

e However, valid semivariogram models in Euclidean space are
not necessarily valid on a stream network

e Ver Hoef et al. (2006, EES) and Cressie et al. (2006, JABES)
introduced the first valid families of models on stream net-
works; another important family of valid models was added
by Ver Hoef and Peterson (2010, JASA).



Fluvial variography, continued

e These models can now be fit to data using the Spatial Model-
ing on Stream Networks (SSN) package in R

e However, little attention has been given to the development of
graphical tools for stream-network variography analogous to
the Euclidean distance-based empirical semivariogram

o [ will introduce such a tool, called the Torgegram, which is an
assemblage of four empirical semivariograms






Concepts and notation: flow-connected sites

Stream distance =s — t






Concepts and notation: flow-unconnected sites

Stream distance = (s —q) + (t - g;)
gj = upstream distance of ‘common junction' of segments i and j



Considerations for covariance models on streams

e As in Euclidean settings, limited data may lead us to make
simplifying assumptions akin to stationarity and isotropy

e For some variables, it would seem that values at flow-unconnected
sites should be less correlated than values at flow-connected
sites, and perhaps they should even be modeled as completely
uncorrelated. Examples: water temperature, levels of point-
source pollutants

e For those same variables, it would seem that differential flow
volumes in tributaries may have an effect on dependence.

e For other variables, e.g. cutthroat trout abundance, perhaps we
can ignore flow-connectedness and volume.



Valid covariance models

e A classical approach to the development of covariance func-
tions on the real line is to create model residuals as integra-
tions of a moving-average function over a white-noise random
process. i.e.,

e(s16) = | _glr—sl6)dW (),

where x and s are locations, and g(x|0) is a square-integrable
moving average function, defined on the real line.

e The covariance between between €(s) and &(s + &) so defined
is given by

C(h16) = [ glx/6)g(x—h[6)dx.
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Adaptation to stream networks

e This approach to obtain covariance models can be adapted for
use with stream networks

e The models proposed in the aforementioned publications are
unilateral, i.e. they take g(+) to be positive in only one direc-
tion (either upstream or downstream)

e Positive only upstream = “tail-up” models

e Positive only downstream = “tail-down” models



Model
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Tail-up models

7 iCyw(s—1t|0) if s; > t; are f/c
Ctu(sivtj’{ﬂij}ve):{ OU MW( | ) OthleI'WijSC

where the 7;;’s are flow-volume weights chosen to preserve variance
stationarity, and Cy,,(+) is a valid covariance function in one dimen-
sion.

e Tail-up models account for flow-connectedness (so that the
correlation is zero when sites are flow-unconnected) and for
differential flow volumes on coalescing stream segments

e Might be appropriate for such things as point-source pollu-
tants
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Stream distance = (s —q) + (t - ;)
gj = upstream distance of ‘common junction’ of segments i and
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Tail-down models
oy ) Cre(s—1|0) if 5; > t; are flow-connected,
Ctd<sl’tl‘9)_ { Cfu<s—qij,l—qij|9) otherwise,

where Cy.(-) and Cp,(-) are valid covariance functions of one and
two variables, respectively (and are related to each other through
their functional dependence on the same moving average function).

e Allow for positive correlation among both flow-connected and
flow-unconnected site-pairs

e Might be appropriate for such things as counts of fish or in-
sects

e Generally, Cy,(-) is not a function of (s —g;;) + (t — ¢;j). Ex-
ception: exponential case
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Mixed models

Some stream network variables may have covariance structures that
are neither pure tail-up nor pure tail down. For such variables re-
searchers have adopted a mixed linear model approach, which leads
to the following covariance structure:

var(Y) = GtzuRm(ptu) + Gzzclth (ptd) + Gr%uL

where Ry, (p,,) is a matrix of autocorrelation values from the tail-up
component; R;;(p,,;) is a matrix of autocorrelation values from the
tail-down component; I is an identity matrix; G,ZM, Gtzd’ and G,%u (the
nugget effect) are variance components; and p,, and p,; are vectors
of correlation parameters.
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The Torgegram: a stream network version of the em-
pirical semivariogram

e For unilateral models and mixes thereof, correlations may de-
pend not only on stream distance but also on:
— flow connectedness
— flow volume
— distances to a common junction

Thus, for diagnostic purposes one empirical semivariogram is
not adequate.

e Instead, four are needed. We call this quadripartite collection
the Torgegram, in honor of stream ecologist Christian Torger-
son.
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Four components of the Torgegram

1. The flow-unconnected stream-distance (FUSD) semivariogram:

y (Y@»—Y(a))z,

(sl‘,tj)GUk

1
2N (Ur)

Yrusp(hy) =

where the U, ’s partition the site-pairs on f/u segments into stream
distance bins.

e If Y(-) is pure tail-up, then Jrysp(hi) is unbiased for the f/u
portion of its semivariogram, which is flat.

e If Y(-) is not pure tail-up but has exponential semivariogram,
then Prysp(hy) is unbiased for the f/u portion.

e Otherwise, this component has no clean interpretation.
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Stream distance = (s —q) + (t - ;)
gj = upstream distance of ‘common junction’ of segments i and
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Four components of the Torgegram

2. The flow-unconnected distance-to-common-junction (FUDJ) semi-
variogram:

1 ( 2
_ Y(Si) —Y(tj)) )
2N (Ji, ) s,-eJkX,;jell

where the (Ji,J;)’s partition the site-pairs on f/u segments into bins
on the basis of distances to common junction.

Yrups (i, Ji) =

e Unbiased for the f/u portion of the semivariogram, without
qualifications.
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Four components of the Torgegram

3. The flow-connected stream-distance (FCSD) semivariogram:

y (Y<si>—Y<r.,->)2,

(S,‘Jj)ECk

1
2N(C)

Yresp(hi) =

where the Cj’s partition the site-pairs on f/c segments into stream
distance bins.

e If Y (-) is pure tail-down, then Jrcsp(hy) is unbiased for the f/c
portion of its semivariogram.

e Otherwise, this component is positively biased for the f/c com-
ponent (because it does not account for flow volume) and has
no clean interpretation.
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e However, if the FCSD semivariogram is computed from only
those site-pairs for which both sites lie on the same segment,
then it is unbiased for the f/c semivariogram without qualifica-
tion (analogous, in a sense, to a pure error mean square). We
call this the pure-correlation FCSD semivariogram.
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Stream distance =s -t

30



Four components of the Torgegram

4. The flow-connected volume-adjusted (FCVA) semivariogram:

1 rysp— Y (si) =Y (1))]?

Freva(he) = Trusp — 5o Y
2N(C) (. 5ec, 7
7 N(UFrusp(h
where Ty gp = 2 (Z kk])VY(Fll]]ISD( ny

e Vrcva(hy) is unbiased for the unweighted f/c portion of the
semivariogram of a pure tail-up Y (-)

e Negatively biased otherwise
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A strategy for fluvial variography

In practice, the covariance structure of Y(+) is unknown to the ana-
lyst, but the Torgegram may be used to identify a plausible structure,
using the following strategy:

1. Examine the FUSD semivariogram. If it appears to be flat,
adopt a pure tail-up model and use the FUSD and FCVA semi-
variograms unambiguously to determine the model’s attributes.
Otherwise, conclude that a tail-up model is not adequate and
proceed to the next step.

2. Compare the “pure correlation” FCSD semivariogram to the
“remainder” of the FCSD semivariogram. If they are similar,
adopt a pure tail-down model and use the FCSD and FUDJ
semivariograms unambiguously to determine the model’s at-
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tributes. Otherwise, proceed to the next step.

3. Adopt a mixed model and estimate it via formal methods.
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Formal test for pure tail-up dependence

e Adaptation of Diblasi-Bowman test for spatial independence
in Euclidean geostatistics (2001, Biometrics)

e Define §;; = (Y; —Y;)? for f/u sites 5; and ¢,
o Test statistic

R 2 A 2
_ Yicj (% —Yrusp)” — Xic; (i — %))

r N ~ \2
Yicj (% — %))

where ¥;; is a nonparametric (kernel-smoothed) estimate of the
f/u component.

e Can assess significance via random permutation
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Simulation study

Dyadic branching stream network of Shreve order 4, 5, or 6
(15, 31, or 63 segments of length 1.0 unit)

Null model: Tail-up exponential model Cy,(h) = exp(—6h) =
p"; equal weighting (1/0.5) at each node

Alternative model: Tail-down exponential model
Sample each segment at its midpoint

1000 simulations from Gaussian process for each combination
of sample size and p

For each simulation, determine whether 7" is among the top 5
T'-values when considered with those from 99 independently
randomized permutations of the data (= size-.05 test)
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Stream network (order-4 case) for simulation study
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Simulation study results

Power (and size):

Oder n p=050 p=075 p=090
4 15 .172(049) .266(.039) .378 (.010)
5 31 .254(.055) .478(.046) .629 (.023)
6 63 .473(.061) .790(.059) .957 (.047)

The test behaves as expected; size and power are reasonable.
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Application to Maryland SO, data

lFlow
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FUSD and FCVA semivariograms for Maryland SO4
data
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The test for pure tail-up dependence is not rejected (P = 0.23).
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Conclusions and ongoing work

e The Torgegram is the graphical equivalent of the empirical
semivariogram for characterizing spatial dependence on stream
networks.

e A coherent strategy for stream network covariance model se-
lection can be based on it, but would be enhanced by several
accompanying hypothesis tests.

e We’ve developed a test for pure tail-up dependence, and are
currently working on tests for

— pure tail-down dependence
— exponentiality of the tail-down component

— variance stationarity, both within and across watersheds
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