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Spatial statistics on streams?

• Premise: Values of a variable occurring in or along a stream
network are as likely as Euclidean spatial data to obey Tobler’s
first law of spatial statistics (i.e., values from “nearby” sites
tend to be similar).

• Consequently, stream ecologists want to apply methods of spa-
tial statistics to address questions about the variable (e.g. to
estimate an average or total over a stream or stream segment,
make predictions at unsampled locations, estimate relation-
ships between the primary variable and other variables, . . . ).

• But a stream network is not a Euclidean space; does this mat-
ter? How much can we borrow or easily adapt from Euclidean
geostatistics?
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Euclidean geostatistics and classical variography

• Geostatistical approach: regard the observed data as a sample
taken from one realization of Y (·) ≡ {Y (s) : s ∈ D}, where D
is a region in two-dimensional (usually) Euclidean space

• Common assumptions: Y (·) is intrinsically stationary and
isotropic, i.e., E[Y (·)] is constant across space and its semi-
variogram γ(s, t) ≡ 1

2E[Y (s)−Y (t)]2 may be expressed as a
function of h = ‖s− t‖.

• Under second-order stationarity, γ(h) = C(0)−C(h), where
C(·) is the covariance function.

• Modeling/estimation/characterization of the semivariogram is
known as variography, for which the main tool is the empiri-
cal semivariogram.
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Empirical semivariogram

γ̂(hk) =
1

2N(Hk)
∑

‖si−s j‖∈Hk

(
Y (si)−Y (s j)

)2

, k = 1, . . . ,K,

where Y (s1), . . . ,Y (sn) are the observed data, hk is a representative
distance (often the average or midrange) for a distance bin Hk, and
N(Hk) is the number of distinct site-pairs in Hk.
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A “typical” empirical semivariogram

Empirical Semivariogram

distance

se
m

iv
a

ri
a

n
ce

0.5

1.0

1.5

2.0

2.5

2 4 6 8

●

●
●

●

●

●
●

●
●

●

●

● ● ●

6



Diagnostic value of empirical semivariogram

• The estimator is (approximately) unbiased

• Can often discern a range, a sill, a nugget, and a shape that
informs semivariogram model selection

• A chosen model may be fit by any of several methods (WLS,
REML)

• Absence of a sill (i.e. unbounded increase) may be evidence
of trend contamination

• Can compute and plot in several directions/subregions and
compare to assess isotropy/stationarity
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Fluvial variography

• Applications of geostatistics to stream network variables date
back to 2003

• Many stream ecologists simply substituted Euclidean distance
in the semivariogram model with stream distance, i.e. distance
along the stream network

• However, valid semivariogram models in Euclidean space are
not necessarily valid on a stream network

• Ver Hoef et al. (2006, EES) and Cressie et al. (2006, JABES)
introduced the first valid families of models on stream net-
works; another important family of valid models was added
by Ver Hoef and Peterson (2010, JASA).
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Fluvial variography, continued

• These models can now be fit to data using the Spatial Model-
ing on Stream Networks (SSN) package in R

• However, little attention has been given to the development of
graphical tools for stream-network variography analogous to
the Euclidean distance-based empirical semivariogram

• I will introduce such a tool, called the Torgegram, which is an
assemblage of four empirical semivariograms
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Concepts and notation: flow-connected sites
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Concepts and notation: flow-unconnected sites
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Stream distance = (s −qij) + (t − qij)
qij = upstream distance of 'common junction' of segments i and j

Flow
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Considerations for covariance models on streams

• As in Euclidean settings, limited data may lead us to make
simplifying assumptions akin to stationarity and isotropy

• For some variables, it would seem that values at flow-unconnected
sites should be less correlated than values at flow-connected
sites, and perhaps they should even be modeled as completely
uncorrelated. Examples: water temperature, levels of point-
source pollutants

• For those same variables, it would seem that differential flow
volumes in tributaries may have an effect on dependence.

• For other variables, e.g. cutthroat trout abundance, perhaps we
can ignore flow-connectedness and volume.
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Valid covariance models

• A classical approach to the development of covariance func-
tions on the real line is to create model residuals as integra-
tions of a moving-average function over a white-noise random
process. i.e.,

ε(s|θ) =
∫

∞

−∞

g(x− s|θ)dW (x),

where x and s are locations, and g(x|θ) is a square-integrable
moving average function, defined on the real line.

• The covariance between between ε(s) and ε(s+h) so defined
is given by

C(h|θ) =
∫

∞

−∞

g(x|θ)g(x−h|θ)dx.
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Adaptation to stream networks

• This approach to obtain covariance models can be adapted for
use with stream networks

• The models proposed in the aforementioned publications are
unilateral, i.e. they take g(·) to be positive in only one direc-
tion (either upstream or downstream)

• Positive only upstream⇒ “tail-up” models

• Positive only downstream⇒ “tail-down” models
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Tail-up models

Ctu(si, t j|{πi j},θ) =
{

πi jCuw(s− t|θ) if si ≥ t j are f/c
0 otherwise,

where the πi j’s are flow-volume weights chosen to preserve variance
stationarity, and Cuw(·) is a valid covariance function in one dimen-
sion.

• Tail-up models account for flow-connectedness (so that the
correlation is zero when sites are flow-unconnected) and for
differential flow volumes on coalescing stream segments

• Might be appropriate for such things as point-source pollu-
tants
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Tail-down models

Ctd(si, t j|θ)=
{

C f c(s− t|θ) if si ≥ t j are flow-connected,
C f u(s−qi j, t−qi j|θ) otherwise,

where C f c(·) and C f u(·) are valid covariance functions of one and
two variables, respectively (and are related to each other through
their functional dependence on the same moving average function).

• Allow for positive correlation among both flow-connected and
flow-unconnected site-pairs

• Might be appropriate for such things as counts of fish or in-
sects

• Generally, C f u(·) is not a function of (s−qi j)+(t−qi j). Ex-
ception: exponential case
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Mixed models

Some stream network variables may have covariance structures that
are neither pure tail-up nor pure tail down. For such variables re-
searchers have adopted a mixed linear model approach, which leads
to the following covariance structure:

var(Y) = σ
2
tuRtu(ρ tu)+σ

2
tdRtd(ρ td)+σ

2
nuI,

where Rtu(ρ tu) is a matrix of autocorrelation values from the tail-up
component; Rtd(ρ td) is a matrix of autocorrelation values from the
tail-down component; I is an identity matrix; σ2

tu, σ2
td , and σ2

nu (the
nugget effect) are variance components; and ρ tu and ρ td are vectors
of correlation parameters.
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The Torgegram: a stream network version of the em-
pirical semivariogram

• For unilateral models and mixes thereof, correlations may de-
pend not only on stream distance but also on:

– flow connectedness

– flow volume

– distances to a common junction

Thus, for diagnostic purposes one empirical semivariogram is
not adequate.

• Instead, four are needed. We call this quadripartite collection
the Torgegram, in honor of stream ecologist Christian Torger-
son.

24



Four components of the Torgegram

1. The flow-unconnected stream-distance (FUSD) semivariogram:

γ̂FUSD(hk) =
1

2N(Uk)
∑

(si,t j)∈Uk

(
Y (si)−Y (t j)

)2

,

where the Uk’s partition the site-pairs on f/u segments into stream
distance bins.

• If Y (·) is pure tail-up, then γ̂FUSD(hk) is unbiased for the f/u
portion of its semivariogram, which is flat.

• If Y (·) is not pure tail-up but has exponential semivariogram,
then γ̂FUSD(hk) is unbiased for the f/u portion.

• Otherwise, this component has no clean interpretation.
25
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Four components of the Torgegram

2. The flow-unconnected distance-to-common-junction (FUDJ) semi-
variogram:

γ̂FUDJ( jk, jl) =
1

2N(Jk,Jl)
∑

si∈Jk, t j∈Jl

(
Y (si)−Y (t j)

)2

,

where the (Jk,Jl)’s partition the site-pairs on f/u segments into bins
on the basis of distances to common junction.

• Unbiased for the f/u portion of the semivariogram, without
qualifications.
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Four components of the Torgegram

3. The flow-connected stream-distance (FCSD) semivariogram:

γ̂FCSD(hk) =
1

2N(Ck)
∑

(si,t j)∈Ck

(
Y (si)−Y (t j)

)2

,

where the Ck’s partition the site-pairs on f/c segments into stream
distance bins.

• If Y (·) is pure tail-down, then γ̂FCSD(hk) is unbiased for the f/c
portion of its semivariogram.

• Otherwise, this component is positively biased for the f/c com-
ponent (because it does not account for flow volume) and has
no clean interpretation.
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• However, if the FCSD semivariogram is computed from only
those site-pairs for which both sites lie on the same segment,
then it is unbiased for the f/c semivariogram without qualifica-
tion (analogous, in a sense, to a pure error mean square). We
call this the pure-correlation FCSD semivariogram.
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Four components of the Torgegram

4. The flow-connected volume-adjusted (FCVA) semivariogram:

γ̂FCVA(hk) = γFUSD−
1

2N(Ck)
∑

(si,t j)∈Ck

2γFUSD− [Y (si)−Y (t j)]
2

πi j

where γFUSD = ∑k N(Uk)γ̂FUSD(hk)
∑k N(Uk)

.

• γ̂FCVA(hk) is unbiased for the unweighted f/c portion of the
semivariogram of a pure tail-up Y (·)

• Negatively biased otherwise
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A strategy for fluvial variography

In practice, the covariance structure of Y (·) is unknown to the ana-
lyst, but the Torgegram may be used to identify a plausible structure,
using the following strategy:

1. Examine the FUSD semivariogram. If it appears to be flat,
adopt a pure tail-up model and use the FUSD and FCVA semi-
variograms unambiguously to determine the model’s attributes.
Otherwise, conclude that a tail-up model is not adequate and
proceed to the next step.

2. Compare the “pure correlation” FCSD semivariogram to the
“remainder” of the FCSD semivariogram. If they are similar,
adopt a pure tail-down model and use the FCSD and FUDJ
semivariograms unambiguously to determine the model’s at-
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tributes. Otherwise, proceed to the next step.

3. Adopt a mixed model and estimate it via formal methods.
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Formal test for pure tail-up dependence

• Adaptation of Diblasi-Bowman test for spatial independence
in Euclidean geostatistics (2001, Biometrics)

• Define γ̂i j = (Yi−Yj)
2 for f/u sites si and t j

• Test statistic

T =
∑i< j

(
γ̂i j− γFUSD

)2−∑i< j
(
γ̂i j− γ̃i j

)2

∑i< j
(
γ̂i j− γ̃i j

)2

where γ̃i j is a nonparametric (kernel-smoothed) estimate of the
f/u component.

• Can assess significance via random permutation
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Simulation study

• Dyadic branching stream network of Shreve order 4, 5, or 6
(15, 31, or 63 segments of length 1.0 unit)

• Null model: Tail-up exponential model Ctu(h) = exp(−θh)≡
ρh; equal weighting (

√
0.5) at each node

• Alternative model: Tail-down exponential model

• Sample each segment at its midpoint

• 1000 simulations from Gaussian process for each combination
of sample size and ρ

• For each simulation, determine whether T is among the top 5
T -values when considered with those from 99 independently
randomized permutations of the data (⇒ size-.05 test)
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Stream network (order-4 case) for simulation study

Flow
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Simulation study results

Power (and size):

Order n ρ = 0.50 ρ = 0.75 ρ = 0.90
4 15 .172 (.049) .266 (.039) .378 (.010)
5 31 .254 (.055) .478 (.046) .629 (.023)
6 63 .473 (.061) .790 (.059) .957 (.047)

The test behaves as expected; size and power are reasonable.
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Application to Maryland SO4 data
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FUSD and FCVA semivariograms for Maryland SO4
data
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The test for pure tail-up dependence is not rejected (P = 0.23).
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Conclusions and ongoing work

• The Torgegram is the graphical equivalent of the empirical
semivariogram for characterizing spatial dependence on stream
networks.

• A coherent strategy for stream network covariance model se-
lection can be based on it, but would be enhanced by several
accompanying hypothesis tests.

• We’ve developed a test for pure tail-up dependence, and are
currently working on tests for

– pure tail-down dependence

– exponentiality of the tail-down component

– variance stationarity, both within and across watersheds
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