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Chapter 41
The MIXED Procedure

Overview

The MIXED procedure fits a variety of mixed linear models to data and enables you
to use these fitted models to make statistical inferences about the data. Amixed linear
modelis a generalization of the standard linear model used in the GLM procedure, the
generalization being that the data are permitted to exhibit correlation and nonconstant
variability. The mixed linear model, therefore, provides you with the flexibility of
modeling not only the means of your data (as in the standard linear model) but their
variances and covariances as well.

The primary assumptions underlying the analyses performed by PROC MIXED are
as follows:

� The data are normally distributed (Gaussian).

� The means (expected values) of the data are linear in terms of a certain set of
parameters.

� The variances and covariances of the data are in terms of a different set of
parameters, and they exhibit a structure matching one of those available in
PROC MIXED.

Since Gaussian data can be modeled entirely in terms of their means and vari-
ances/covariances, the two sets of parameters in a mixed linear model actually spec-
ify the complete probability distribution of the data. The parameters of the mean
model are referred to asfixed-effects parameters, and the parameters of the variance-
covariance model are referred to ascovariance parameters.

The fixed-effects parameters are associated with known explanatory variables, as in
the standard linear model. These variables can be either qualitative (as in the tradi-
tional analysis of variance) or quantitative (as in standard linear regression). How-
ever, the covariance parameters are what distinguishes the mixed linear model from
the standard linear model.

The need for covariance parameters arises quite frequently in applications, the fol-
lowing being the two most typical scenarios:

� The experimental units on which the data are measured can be grouped into
clusters, and the data from a common cluster are correlated.

� Repeated measurements are taken on the same experimental unit, and these
repeated measurements are correlated or exhibit variability that changes.
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The first scenario can be generalized to include one set of clusters nested within
another. For example, if students are the experimental unit, they can be clustered into
classes, which in turn can be clustered into schools. Each level of this hierarchy can
introduce an additional source of variability and correlation. The second scenario
occurs in longitudinal studies, where repeated measurements are taken over time.
Alternatively, the repeated measures could be spatial or multivariate in nature.

PROC MIXED provides a variety of covariance structures to handle the previous two
scenarios. The most common of these structures arises from the use ofrandom-effects
parameters, which are additional unknown random variables assumed to impact the
variability of the data. The variances of the random-effects parameters, commonly
known asvariance components, become the covariance parameters for this particular
structure. Traditional mixed linear models contain both fixed- and random-effects
parameters, and, in fact, it is the combination of these two types of effects that led
to the namemixed model. PROC MIXED fits not only these traditional variance
component models but numerous other covariance structures as well.

PROC MIXED fits the structure you select to the data using the method ofrestricted
maximum likelihood (REML), also known asresidual maximum likelihood. It is here
that the Gaussian assumption for the data is exploited. Other estimation methods
are also available, includingmaximum likelihoodandMIVQUE0. The details behind
these estimation methods are discussed in subsequent sections.

Once a model has been fit to your data, you can use it to draw statistical inferences via
both the fixed-effects and covariance parameters. PROC MIXED computes several
different statistics suitable for generating hypothesis tests and confidence intervals.
The validity of these statistics depends upon the mean and variance-covariance model
you select, so it is important to choose the model carefully. Some of the output from
PROC MIXED helps you assess your model and compare it with others.

Basic Features

PROC MIXED provides easy accessibility to numerous mixed linear models that are
useful in many common statistical analyses. In the style of the GLM procedure,
PROC MIXED fits the specified mixed linear model and produces appropriate statis-
tics.

Some basic features of PROC MIXED are

� covariance structures, including variance components, compound symmetry,
unstructured, AR(1), Toeplitz, spatial, general linear, and factor analytic

� GLM-type grammar, using MODEL, RANDOM, and REPEATED statements
for model specification and CONTRAST, ESTIMATE, and LSMEANS state-
ments for inferences

� appropriate standard errors for all specified estimable linear combinations of
fixed and random effects, and correspondingt- andF-tests

� subject and group effects that enable blocking and heterogeneity, respectively
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� REML and ML estimation methods implemented with a Newton-Raphson al-
gorithm

� capacity to handle unbalanced data

� ability to create a SAS data set corresponding to any table

PROC MIXED uses the Output Delivery System (ODS), a SAS subsystem that pro-
vides capabilities for displaying and controlling the output from SAS procedures.
ODS enables you to convert any of the output from PROC MIXED into a SAS data
set. See the “Changes in Output” section on page 2166.

Notation for the Mixed Model

This section introduces the mathematical notation used throughout this chapter to
describe the mixed linear model. You should be familiar with basic matrix algebra
(refer to Searle 1982). A more detailed description of the mixed model is contained
in the “Mixed Models Theory” section on page 2145.

A statistical model is a mathematical description of how data are generated. The
standard linear model, as used by the GLM procedure, is one of the most common
statistical models:

y = X� + �

In this expression,y represents a vector of observed data,� is an unknown vector of
fixed-effects parameters with known design matrixX, and� is an unknown random
error vector modeling the statistical noise aroundX�. The focus of the standard
linear model is to model the mean ofy by using the fixed-effects parameters�. The
residual errors� are assumed to be independent and identically distributed Gaussian
random variables with mean 0 and variance�2.

The mixed model generalizes the standard linear

model as follows:

y = X� + Z
 + �

Here,
 is an unknown vector of random-effects parameters with known design ma-
trix Z, and� is an unknown random error vector whose elements are no longer re-
quired to be independent and homogeneous.

To further develop this notion of variance modeling, assume that
 and� are Gaussian
random variables that are uncorrelated and have expectations0 and variancesG and
R, respectively. The variance ofy is thus

V = ZGZ0 +R

SAS OnlineDoc: Version 8
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Note that, whenR = �2I andZ = 0, the mixed model reduces to the standard linear
model.

You can model the variance of the data,y, by specifying the structure (or form) ofZ,
G, andR. The model matrixZ is set up in the same fashion asX, the model matrix
for the fixed-effects parameters. ForG andR, you must select somecovariance
structure.Possible covariance structures include

� variance components

� compound symmetry (common covariance plus diagonal)

� unstructured (general covariance)

� autoregressive

� spatial

� general linear

� factor analytic

By appropriately defining the model matricesX andZ, as well as the covariance
structure matricesG andR, you can perform numerous mixed model analyses.

PROC MIXED Contrasted with Other SAS Procedures

PROC MIXED is a generalization of the GLM procedure in the sense that PROC
GLM fits standard linear models, and PROC MIXED fits the wider class of mixed
linear models. Both procedures have similar CLASS, MODEL, CONTRAST, ESTI-
MATE, and LSMEANS statements, but their RANDOM and REPEATED statements
differ (see the following paragraphs). Both procedures use the nonfull-rank model
parameterization, although the sorting of classification levels can differ between the
two. PROC MIXED computes only Type I–Type III tests of fixed effects, while
PROC GLM offers Types I–IV.

The RANDOM statement in PROC MIXED incorporates random effects constitut-
ing the
 vector in the mixed model. However, in PROC GLM, effects specified
in the RANDOM statement are still treated as fixed as far as the model fit is con-
cerned, and they serve only to produce corresponding expected mean squares. These
expected mean squares lead to the traditional ANOVA estimates of variance compo-
nents. PROC MIXED computes REML and ML estimates of variance parameters,
which are generally preferred to the ANOVA estimates (Searle 1988; Harville 1988;
Searle, Casella, and McCulloch 1992). Optionally, PROC MIXED also computes
MIVQUE0 estimates, which are similar to ANOVA estimates.

The REPEATED statement in PROC MIXED is used to specify covariance structures
for repeated measurements on subjects, while the REPEATED statement in PROC
GLM is used to specify various transformations with which to conduct the traditional
univariate or multivariate tests. In repeated measures situations, the mixed model
approach used in PROC MIXED is more flexible and more widely applicable than
either the univariate or multivariate approaches. In particular, the mixed model ap-
proach provides a larger class of covariance structures and a better mechanism for
handling missing values (Wolfinger and Chang 1995).
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PROC MIXED subsumes the VARCOMP procedure. PROC MIXED provides a wide
variety of covariance structures, while PROC VARCOMP estimates only simple ran-
dom effects. PROC MIXED carries out several analyses that are absent in PROC
VARCOMP, including the estimation and testing of linear combinations of fixed and
random effects.

The ARIMA and AUTOREG procedures provide more time series structures than
PROC MIXED, although they do not fit variance component models. The CALIS
procedure fits general covariance matrices, but it does not allow fixed effects as does
PROC MIXED. The LATTICE and NESTED procedures fit special types of mixed
linear models that can also be handled in PROC MIXED, although PROC MIXED
may run slower because of its more general algorithm. The TSCSREG procedure
analyzes time-series cross-sectional data, and it fits some structures not available in
PROC MIXED.

Getting Started

Clustered Data Example

Consider the following SAS data set as an introductory example:

data heights;
input Family Gender$ Height @@;
datalines;

1 F 67 1 F 66 1 F 64 1 M 71 1 M 72 2 F 63
2 F 63 2 F 67 2 M 69 2 M 68 2 M 70 3 F 63
3 M 64 4 F 67 4 F 66 4 M 67 4 M 67 4 M 69
run;

The response variableHeight measures the heights (in inches) of 18 individuals.
The individuals are classified according toFamily andGender. You can perform
a traditional two-way analysis of variance of these data with the following PROC
MIXED code:

proc mixed;
class Family Gender;
model Height = Gender Family Family*Gender;

run;

The PROC MIXED statement invokes the procedure. The CLASS statement in-
structs PROC MIXED to consider bothFamily andGender as classification vari-
ables. Dummy (indicator) variables are, as a result, created corresponding to all of
the distinct levels ofFamily andGender. For these data,Family has four levels and
Gender has two levels.

The MODEL statement first specifies the response (dependent) variableHeight. The
explanatory (independent) variables are then listed after the equal (=) sign. Here,
the two explanatory variables areGender andFamily, and they comprise the main
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effects of the design. The third explanatory term,Family*Gender, models an inter-
action between the two main effects.

PROC MIXED uses the dummy variables associated withGender, Family, and
Family*Gender to construct theX matrix for the linear model. A column of 1s
is also included as the first column ofX to model a global intercept. There are noZ
orG matrices for this model, andR is assumed to equal�2I, whereI is an18 � 18
identity matrix.

The RUN statement completes the specification. The coding is precisely the same
as with the GLM procedure. However, much of the output from PROC MIXED is
different from that produced by PROC GLM.

The following is the output from PROC MIXED.

The Mixed Procedure

Model Information

Data Set WORK.HEIGHTS
Dependent Variable Height
Covariance Structure Diagonal
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Residual

Figure 41.1. Model Information

The “Model Information” table describes the model, some of the variables that it
involves, and the method used in fitting it. This table also lists the method (profile,
factor, or fit) for handling the residual variance.

The Mixed Procedure

Class Level Information

Class Levels Values

Family 4 1 2 3 4
Gender 2 F M

Figure 41.2. Class Level Information

The “Class Level Information” table lists the levels of all variables specified in the
CLASS statement. You can check this table to make sure that the data are correct.
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The Mixed Procedure

Dimensions

Covariance Parameters 1
Columns in X 15
Columns in Z 0
Subjects 1
Max Obs Per Subject 18
Observations Used 18
Observations Not Used 0
Total Observations 18

Figure 41.3. Dimensions

The “Dimensions” table lists the sizes of relevant matrices. This table can be useful
in determining CPU time and memory requirements.

The Mixed Procedure

Covariance Parameter
Estimates

Cov Parm Estimate

Residual 2.1000

Figure 41.4. Covariance Parameter Estimates

The “Covariance Parameter Estimates” table displays the estimate of�2 for the
model.

The Mixed Procedure

Fit Statistics

Res Log Likelihood -20.8
Akaike’s Information Criterion -21.8
Schwarz’s Bayesian Criterion -21.9
-2 Res Log Likelihood 41.6

Figure 41.5. Model Fitting Information

The “Fitting Information” table lists several pieces of information about the fit-
ted mixed model, including values derived from the computed value of the re-
stricted/residual likelihood.

SAS OnlineDoc: Version 8
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The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Gender 1 10 17.63 0.0018
Family 3 10 5.90 0.0139
Family*Gender 3 10 2.89 0.0889

Figure 41.6. Tests of Fixed Effects

The “Type 3 Tests of Fixed Effects” table displays significance tests for the three
effects listed in the MODEL statement. The Type IIIF -statistics andp-values are the
same as those produced by the GLM procedure. However, because PROC MIXED
uses a likelihood-based estimation scheme, it does not directly compute or display
sums of squares for this analysis.

The Type 3 test forFamily*Gender effect is not significant at the 5% level, but the
tests for both main effects are significant.

The important assumptions behind this analysis are that the data are normally dis-
tributed and that they are independent with constant variance. For these data, the
normality assumption is probably realistic since the data are observed heights. How-
ever, since the data occur in clusters (families), it is very likely that observations from
the same family are statistically correlated, that is, not independent.

The methods implemented in PROC MIXED are still based on the assumption of
normally distributed data, but you can drop the assumption of independence by mod-
eling statistical correlation in a variety of ways. You can also model variances that
are heterogeneous, that is, nonconstant.

For the height data, one of the simplest ways of modeling correlation is through the
use ofrandom effects.Here the family effect is assumed to be normally distributed
with zero mean and some unknown variance. This is in contrast to the previous model
in which the family effects are just constants, orfixed effects.DeclaringFamily as a
random effect sets up a common correlation among all observations having the same
level ofFamily.

DeclaringFamily*Gender as a random effect models an additional correlation be-
tween all observations that have the same level of bothFamily andGender. One
interpretation of this effect is that a female in a certain family exhibits more correla-
tion with the other females in that family than with the other males, and likewise for
a male. With the height data, this model seems reasonable.

The code to fit this correlation model in PROC MIXED is as follows:

proc mixed;
class Family Gender;
model Height = Gender;
random Family Family*Gender;

run;
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Note thatFamily andFamily*Gender are now listed in the RANDOM statement.
The dummy variables associated with them are used to construct theZ matrix in the
mixed model. TheXmatrix now consists of a column of 1s and the dummy variables
for Gender.

TheGmatrix for this model is diagonal, and it contains the variance components for
bothFamily andFamily*Gender. TheRmatrix is still assumed to equal�2I, where
I is an identity matrix.

The output from this analysis is as follows.

The Mixed Procedure

Model Information

Data Set WORK.HEIGHTS
Dependent Variable Height
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Figure 41.7. Model Information

The “Model Information” table shows that the containment method is used to com-
pute the degrees of freedom for this analysis. This is the default method when a
RANDOM statement is used; see the description of the DDFM= option on page 2117
for more information.

The Mixed Procedure

Class Level Information

Class Levels Values

Family 4 1 2 3 4
Gender 2 F M

Figure 41.8. Class Levels Information

The “Class Levels Information” table is the same as before.
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The Mixed Procedure

Dimensions

Covariance Parameters 3
Columns in X 3
Columns in Z 12
Subjects 1
Max Obs Per Subject 18
Observations Used 18
Observations Not Used 0
Total Observations 18

Figure 41.9. Dimensions

The “Dimensions” table displays the new sizes of theX andZ matrices.

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 74.11074833
1 2 71.51614003 0.01441208
2 1 71.13845990 0.00412226
3 1 71.03613556 0.00058188
4 1 71.02281757 0.00001689
5 1 71.02245904 0.00000002
6 1 71.02245869 0.00000000

Convergence criteria met.

Figure 41.10. REML Estimation Iteration History

The “Iteration History” table displays the results of the numerical optimization of
the restricted/residual likelihood. Six iterations are required to achieve the default
convergence criterion of 1E�8.

The Mixed Procedure

Covariance Parameter
Estimates

Cov Parm Estimate

Family 2.4010
Family*Gender 1.7657
Residual 2.1668

Figure 41.11. Covariance Parameter Estimates (REML)
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The “Covariance Parameter Estimates” table displays the results of the REML fit.
The Estimate column contains the estimates of the variance components forFamily
andFamily*Gender, as well as the estimate of�2.

The Mixed Procedure

Fit Statistics

Res Log Likelihood -35.5
Akaike’s Information Criterion -38.5
Schwarz’s Bayesian Criterion -37.6
-2 Res Log Likelihood 71.0

Figure 41.12. Fitting Information

The “Fitting Information” table contains basic information about the REML fit.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Gender 1 3 7.95 0.0667

Figure 41.13. Type 3 Tests of Fixed Effects

The “Type 3 Tests of Fixed Effects” table contains a significance test for the lone fixed
effect,Gender. Note that the associatedp-value is not nearly as significant as in the
previous analysis. This illustrates the importance of correctly modeling correlation
in your data.

An additional benefit of the random effects analysis is that it enables you to make
inferences about gender that apply to an entire population of families, whereas the
inferences about gender from the analysis whereFamily and Family*Gender are
fixed effects apply only to the particular families in the data set.

PROC MIXED thus offers you the ability to model correlation directly and to make
inferences about fixed effects that apply to entire populations of random effects.
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Syntax

The following statements are available in PROC MIXED.

PROC MIXED < options > ;
BY variables ;
CLASS variables ;
ID variables ;
MODEL dependent = < fixed-effects > < / options > ;
RANDOM random-effects < / options > ;
REPEATED < repeated-effect >< / options > ;
PARMS (value-list) : : : < / options > ;
PRIOR < distribution >< / options > ;
CONTRAST ’label’ < fixed-effect values : : : >

< j random-effect values : : : > , : : : < / options > ;
ESTIMATE ’label’ < fixed-effect values : : : >

< j random-effect values : : : >< / options > ;
LSMEANS fixed-effects < / options > ;
MAKE ’table’ OUT=SAS-data-set ;
WEIGHT variable ;

Items within angle brackets ( < > ) are optional. TheCONTRAST, ESTIMATE,
LSMEANS, MAKE, and RANDOM statements can appear multiple times; all other
statements can appear only once.

The PROC MIXED and MODEL statements are required, and the MODEL statement
must appear after the CLASS statement if a CLASS statement is included. The CON-
TRAST, ESTIMATE, LSMEANS, RANDOM, and REPEATED statements must fol-
low the MODEL statement. The CONTRAST and ESTIMATE statements must also
follow any RANDOM statements.

Table 41.1 summarizes the basic functions and important options of each PROC
MIXED statement. The syntax of each statement in Table 41.1 is described in the
following sections in alphabetical order after the description of the PROC MIXED
statement.
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Table 41.1. Summary of PROC MIXED Statements

Statement Description Important Options
PROC MIXED invokes the procedure DATA= specifies input data set, METHOD= spec-

ifies estimation method
BY performs multiple

PROC MIXED analyses
in one invocation

none

CLASS declares qualitative vari-
ables that create indica-
tor variables in design
matrices

none

ID lists additional variables
to be included in pre-
dicted values tables

none

MODEL specifies dependent vari-
able and fixed effects,
setting upX

S requests solution for fixed-effects parameters,
DDFM= specifies denominator degrees of free-
dom method, OUTP= outputs predicted values to
a data set

RANDOM specifies random effects,
setting upZ andG

SUBJECT= creates block-diagonality, TYPE=
specifies covariance structure, S requests solution
for random-effects parameters, G displays esti-
matedG

REPEATED sets upR SUBJECT= creates block-diagonality, TYPE=
specifies covariance structure, R displays esti-
mated blocks ofR, GROUP= enables between-
subject heterogeneity, LOCAL adds a diagonal
matrix toR

PARMS specifies a grid of initial
values for the covariance
parameters

HOLD= and NOITER hold the covariance param-
eters or their ratios constant, PDATA= reads the
initial values from a SAS data set

PRIOR performs a sampling-
based Bayesian analysis
for variance component
models

NSAMPLE= specifies the sample size, SEED=
specifies the starting seed

CONTRAST constructs custom hy-
pothesis tests

E displays theL matrix coefficients

ESTIMATE constructs custom scalar
estimates

CL produces confidence limits

LSMEANS computes least squares
means for classification
fixed effects

DIFF computes differences of the least squares
means, ADJUST= performs multiple compar-
isons adjustments, AT changes covariates, OM
changes weighting, CL produces confidence lim-
its, SLICE= tests simple effects

MAKE converts any displayed
table into a SAS data set

none. Has been superceded by the Output Deliv-
ery System (ODS)

WEIGHT specifies a variable by
which to weightR

none
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PROC MIXED Statement

PROC MIXED < options >;

The PROC MIXED statement invokes the procedure. You can specify the following
options.

ABSOLUTE
makes the convergence criterion absolute. By default, it is relative (divided by the
current objective function value). See the CONVF, CONVG, and CONVH options
in this section for a description of various convergence criteria.

ALPHA= number
requests that confidence limits be constructed for the covariance parameter estimates
with confidence level1� number. The value ofnumbermust be between 0 and 1;
the default is 0.05.

ASYCORR
produces the asymptotic correlation matrix of the covariance parameter estimates. It
is computed from the corresponding asymptotic covariance matrix (see the descrip-
tion of the ASYCOV option, which follows). For ODS purposes, the label of the
“Asymptotic Correlation” table is “AsyCorr.”

ASYCOV
requests that the asymptotic covariance matrix of the covariance parameters be dis-
played. By default, this matrix is the observed inverse Fisher information matrix,
which equals2H�1, whereH is the Hessian (second derivative) matrix of the ob-
jective function. See the “Covariance Parameter Estimates” section on page 2163
for more information about this matrix. When you use the SCORING= option and
PROC MIXED converges without stopping the scoring algorithm, PROC MIXED
uses the expected Hessian matrix to compute the covariance matrix instead of the ob-
served Hessian. For ODS purposes, the label of the “Asymptotic Covariance” table
is “AsyCov.”

CL<=WALD>
requests confidence limits for the covariance parameter estimates. A Satterthwaite
approximation is used to construct limits for all parameters that have a default lower
boundary constraint of zero. These limits take the form

�b�2
�2�;1��=2

� �2 �
�b�2
�2�;�=2

where� = 2Z2,Z is the Wald statisticb�2=se(b�2), and the denominators are quantiles
of the �2-distribution with � degrees of freedom. Refer to Milliken and Johnson
(1992) and Burdick and Graybill (1992) for similar techniques.

For all other parameters, WaldZ-scores and normal quantiles are used to construct
the limits. The optional =WALD specification requests Wald limits for all parameters.
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The confidence limits are displayed as extra columns in the “Covariance Parameter
Estimates” table. The confidence level is1�� = 0:95 by default; this can be changed
with the ALPHA= option.

CONVF<=number>
requests the relative function convergence criterion with tolerancenumber. The rela-
tive function convergence criterion is

jfk � fk�1j

jfkj
� number

wherefk is the value of the objective function at iterationk. To prevent the division
by jfkj, use the ABSOLUTE option. The default convergence criterion is CONVH,
and the default tolerance is 1E�8.

CONVG <=number>
requests the relative gradient convergence criterion with tolerancenumber. The rela-
tive gradient convergence criterion is

maxj jgjkj

jfkj
� number

wherefk is the value of the objective function, andgjk is the jth element of the
gradient (first derivative) of the objective function, both at iterationk. To prevent
division by jfkj, use the ABSOLUTE option. The default convergence criterion is
CONVH, and the default tolerance is 1E�8.

CONVH<=number>
requests the relative Hessian convergence criterion with tolerancenumber. The rela-
tive Hessian convergence criterion is

gk
0H�1

k gk

jfkj
� number

wherefk is the value of the objective function,gk is the gradient (first derivative)
of the objective function, andHk is the Hessian (second derivative) of the objective
function, all at iterationk.

If Hk is singular, then PROC MIXED uses the following relative criterion:

g0kgk

jfkj
� number

To prevent the division byjfkj, use the ABSOLUTE option. The default convergence
criterion is CONVH, and the default tolerance is 1E�8.

COVTEST
produces asymptotic standard errors and WaldZ-tests for the covariance parameter
estimates.
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DATA=SAS-data-set
names the SAS data set to be used by PROC MIXED. The default is the most recently
created data set.

DFBW
has the same effect as the DDFM=BW option in the MODEL statement.

EMPIRICAL
computes the estimated variance-covariance matrix of the fixed-effects parameters
by using the asymptotically consistent estimator described in Huber (1967), White
(1980), Liang and Zeger (1986), and Diggle, Liang, and Zeger (1994). This estimator
is commonly referred to as the “sandwich” estimator, and it is computed as follows:

(X0 bV�1X)�

 
SX
i=1

X0
i
cVi

�1b�ib�i0cVi
�1
Xi

!
(X0 bV�1X)�

Here, b�i = yi �Xi
b�, S is the number of subjects, and matrices with ani subscript

are those for theith subject. You must include the SUBJECT= option in either a
RANDOM or REPEATED statement for this option to take effect.

When you specify the EMPIRICAL option, PROC MIXED adjusts all standard errors
and test statistics involving the fixed-effects parameters. This changes output in the
following tables (listed in Table 41.7 on page 2166): Contrast, CorrB, CovB, Diffs,
Estimates, InvCovB, LSMeans, MMEq, MMEqSol, Slices, SolutionF, Tests1–Tests3.
The OUTP= and OUTPM= data sets are also affected. Finally, the Satterthwaite
and Kenward-Roger degrees of freedom methods are not available if you specify
EMPIRICAL.

IC
displays a table of various information criteria. Four different criteria are computed
in four different ways, producing 16 values in all. Table 41.2 displays the four criteria
in both larger-is-better and smaller-is-better forms.

Table 41.2. Information Criteria

Criteria Larger-is-better Smaller-is-better Reference
AIC `� d �2`+ 2d Akaike (1974)

HQIC `� d log logn �2`+ 2d log logn Hannan and Quinn (1979)
BIC `� d=2 log n �2`+ d log n Schwarz (1978)

CAIC `� d(log n+ 1)=2 �2`+ d(log n+ 1) Bozdogan (1987)

Here` denotes the maximum value of the (possibly restricted) log likelihood,d the
dimension of the model, andn the number of effective observations. In Version
6 of SAS/STAT software,n equals the number of valid observations for maximum
likelihood estimation andn� p for restricted maximum likelihood estimation, where
p equals the rank ofX. In later versions,n equals the number of effective subjects
as displayed in the “Dimensions” table, unless this value equals 1, in which casen
reverts to the Version 6 values.

PROC MIXED evaluates the criteria for both forms usingd equal to bothq andq+p,
whereq is the effective number of estimated covariance parameters. In Version 6,
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when a parameter estimate lies on a boundary constraint, then it is still included in
the calculation ofd, but in later versions it is not. The most common example of this
behavior is when a variance component is estimated to equal zero.

For ODS purposes, the name of the “Information Criteria” table is “InfoCrit.”

INFO
is a default option. The creation of the “Model Information” and “Dimensions” tables
can be suppressed using the NOINFO option.

Note that, in Version 6, this option displays the “Model Information” and “Dimen-
sions” tables.

ITDETAILS
displays the parameter values at each iteration and enables the writing of notes to
the SAS log pertaining to “infinite likelihood” and “singularities” during Newton-
Raphson iterations.

LOGNOTE
writes periodic notes to the log describing the current status of computations. It is
designed for use with analyses requiring extensive CPU resources.

MAXFUNC=number
specifies the maximum number of likelihood evaluations in the optimization process.
The default is 150.

MAXITER=number
specifies the maximum number of iterations. The default is 50.

METHOD=REML
METHOD=ML
METHOD=MIVQUE0
METHOD=TYPE1
METHOD=TYPE2
METHOD=TYPE3

specifies the estimation method for the covariance parameters. The REML specifica-
tion performs residual (restricted) maximum likelihood, and it is the default method.
The ML specification performs maximum likelihood, and the MIVQUE0 specifica-
tion performs minimum variance quadratic unbiased estimation of the covariance pa-
rameters.

The METHOD=TYPEn specifications apply only to variance component models
with no SUBJECT= effects and no REPEATED statement. An analysis of variance
table is included in the output, and the expected mean squares are used to estimate the
variance components (refer to Chapter 30, “The GLM Procedure,” for further expla-
nation). The resulting method-of-moment variance component estimates are used
in subsequent calculations, including standard errors computed from ESTIMATE
and LSMEANS statements. For ODS purposes, the new table names are “Type1,”
“Type2,” and “Type3,” respectively.

SAS OnlineDoc: Version 8



2102 � Chapter 41. The MIXED Procedure

MMEQ
requests that coefficients of the mixed model equations be displayed. These are

"
X0 bR�1

X X0 bR�1
Z

Z0 bR�1
X Z0 bR�1

Z+ bG�1

#
;

"
X0 bR�1

y

Z0 bR�1
y

#

assuming thatbG is nonsingular. IfbG is singular, PROC MIXED produces the fol-
lowing coefficients

"
X0 bR�1

X X0 bR�1
Z bGbGZ0 bR�1

X bGZ0 bR�1
Z bG+ bG

#
;

"
X0 bR�1

ybGZ0 bR�1
y

#

See the “Estimating� and
 in the Mixed Model” section on page 2153 for further
information on these equations.

MMEQSOL
requests that a solution to the mixed model equations be produced, as well as the in-
verted coefficients matrix. Formulas for these equations are provided in the preceding
description of the MMEQ option.

When bG is singular,b� and a generalized inverse of the left-hand-side coefficient
matrix are transformed usingbG to produceb
 and bC, respectively, wherebC is a
generalized inverse of the left-hand-side coefficient matrix of the original equations.

NAMELEN<=number>
specifies the length to which long effect names are shortened. The default and mini-
mum value is 20.

NOBOUND
has the same effect as the NOBOUND option in the PARMS statement (see
page 2124).

NOCLPRINT<=number>
suppresses the display of the “Class Level Information” table if you do not specify
number. If you do specifynumber, only levels with totals that are less thannumber
are listed in the table.

NOINFO
suppresses the display of the “Model Information” and “Dimensions” tables.

NOITPRINT
suppresses the display of the “Iteration History” table.

NOPROFILE
includes the residual variance as part of the Newton-Raphson iterations. This option
applies only to models that have a residual variance parameter. By default, this pa-
rameter is profiled out of the likelihood calculations, except when you have specified
the HOLD= or NOITER option in the PARMS statement.
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ORD
displays ordinates of the relevant distribution in addition top-values. The ordinate
can be viewed as an approximate odds ratio of hypothesis probabilities.

ORDER=DATA
ORDER=FORMATTED
ORDER=FREQ
ORDER=INTERNAL

specifies the sorting order for the levels of all CLASS variables. This ordering de-
termines which parameters in the model correspond to each level in the data, so the
ORDER= option may be useful when you use CONTRAST or ESTIMATE state-
ments.

The default is ORDER=FORMATTED, and its behavior has been modified for Ver-
sion 8. Now, for numeric variables for which you have supplied no explicit format
(that is, for which there is no corresponding FORMAT statement in the current PROC
MIXED run or in the DATA step that created the data set), the levels are ordered by
their internal (numeric) value. In releases previous to Version 8, numeric class lev-
els with no explicit format were ordered by their BEST12. formatted values. In
order to revert to the previous method you can specify this format explicitly for the
CLASS variables. The change was implemented because the former default behavior
for ORDER=FORMATTED often resulted in levels not being ordered numerically
and required you to use an explicit format or ORDER=INTERNAL to get the more
natural ordering.

The following table shows how PROC MIXED interprets values of the ORDER=
option.

Value of ORDER= Levels Sorted By
DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric
variables with no explicit format, which are
sorted by their unformatted (internal) value

FREQ descending frequency count; levels with the
most observations come first in the order

INTERNAL unformatted value

For FORMATTED and INTERNAL, the sort order is machine dependent. For more
information on sorting order, see the chapter on the SORT procedure in theSAS
Procedures Guideand the discussion of BY-group processing inSAS Language Ref-
erence: Concepts.

RATIO
produces the ratio of the covariance parameter estimates to the estimate of the residual
variance when the latter exists in the model.

RIDGE=number
specifies the starting value for the minimum ridge value used in the Newton-Raphson
algorithm. The default is 0.3125.
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SCORING<=number>
requests that Fisher scoring be used in association with the estimation method up to
iterationnumber, which is 0 by default. When you use the SCORING= option and
PROC MIXED converges without stopping the scoring algorithm, PROC MIXED
uses the expected Hessian matrix to compute approximate standard errors for the co-
variance parameters instead of the observed Hessian. The output from the ASYCOV
and ASYCORR options is similarly adjusted.

SIGITER
is an alias for the NOPROFILE option.

UPDATE
is an alias for the LOGNOTE option.

BY Statement

BY variables ;

You can specify a BY statement with PROC MIXED to obtain separate analyses on
observations in groups defined by the BY variables. When a BY statement appears,
the procedure expects the input data set to be sorted in order of the BY variables. The
variablesare one or more variables in the input data set.

If your input data set is not sorted in ascending order, use one of the following alter-
natives:

� Sort the data using the SORT procedure with a similar BY statement.

� Specify the BY statement options NOTSORTED or DESCENDING in the BY
statement for the MIXED procedure. The NOTSORTED option does not mean
that the data are unsorted but rather means that the data are arranged in groups
(according to values of the BY variables) and that these groups are not neces-
sarily in alphabetical or increasing numeric order.

� Create an index on the BY variables using the DATASETS procedure (in base
SAS software).

Since sorting the data changes the order in which PROC MIXED reads observations,
the sorting order for the levels of the CLASS variable may be affected if you have
specified ORDER=DATA in the PROC MIXED statement. This, in turn, affects spec-
ifications in the CONTRAST statements.

For more information on the BY statement, refer to the discussion inSAS Language
Reference: Concepts. For more information on the DATASETS procedure, refer to
the discussion in theSAS Procedures Guide.
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CLASS Statement

CLASS variables ;

The CLASS statement names the classification variables to be used in the analysis. If
the CLASS statement is used, it must appear before the MODEL statement.

Classification variables can be either character or numeric. The procedure uses only
the first 16 characters of a character variable. Class levels are determined from the
formatted values of the CLASS variables. Thus, you can use formats to group values
into levels. Refer to the discussion of the FORMAT procedure in theSAS Proce-
dures Guideand to the discussions of the FORMAT statement and SAS formats in
SAS Language Reference: Dictionary. You can adjust the display order of CLASS
variable levels with the ORDER= option in the PROC MIXED statement.

CONTRAST Statement

CONTRAST ’label’ < fixed-effect values . . .>
< j random-effect values . . .> , . . .< / options > ;

The CONTRAST statement provides a mechanism for obtaining custom hypothesis
tests. It is patterned after the CONTRAST statement in PROC GLM, although it has
been extended to include random effects. This enables you to select an appropriate
inference space (McLean, Sanders, and Stroup 1991).

You can test the hypothesisL0� = 0, whereL0 = (K0 M0) and�0 = (�0 
 0),
in several inference spaces. The inference space corresponds to the choice ofM.
WhenM = 0, your inferences apply to the entire population from which the random
effects are sampled; this is known as thebroad inference space. When all elements
of M are nonzero, your inferences apply only to the observed levels of the random
effects. This is known as thenarrow inference space, and you can also choose it by
specifying all of the random effects as fixed. The GLM procedure uses the narrow
inference space. Finally, by zeroing portions ofM corresponding to selected main
effects and interactions, you can chooseintermediateinference spaces. The broad
inference space is usually the most appropriate, and it is used when you do not specify
any random effects in the CONTRAST statement.

In the CONTRAST statement,

label identifies the contrast in the table. A label is required for every
contrast specified. Labels can be up to 20 characters and must be
enclosed in single quotes.

fixed-effect identifies an effect that appears in the MODEL statement. The
keyword INTERCEPT can be used as an effect when an intercept
is fitted in the model. You do not need to include all effects that are
in the MODEL statement.
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random-effect identifies an effect that appears in the RANDOM statement. The
first random effect must follow a vertical bar (j); however, random
effects do not have to be specified.

values are constants that are elements of theL matrix associated with the
fixed and random effects.

The rows ofL0 are specified in order and are separated by commas. The rows of the
K0 component ofL0 are specified on the left side of the vertical bars (j). These rows
test the fixed effects and are, therefore, checked for estimability. The rows of theM0

component ofL0 are specified on the right side of the vertical bars. They test the
random effects, and no estimability checking is necessary.

If PROC MIXED finds the fixed-effects portion of the specified contrast to be nones-
timable (see the SINGULAR= option on page 2108), then it displays “Non-est” for
the contrast entries.

The following CONTRAST statement reproduces theF-test for the effectA in the
split-plot example (see Example 41.1 on page 2175):

contrast ’A broad’
A 1 -1 0 A*B .5 .5 -.5 -.5 0 0 ,
A 1 0 -1 A*B .5 .5 0 0 -.5 -.5 / df=6;

Note that no random effects are specified in the preceding contrast; thus, the inference
space is broad. The resultingF-test has two numerator degrees of freedom becauseL0

has two rows. The denominator degrees of freedom is, by default, the residual degrees
of freedom (9), but the DF= option changes the denominator degrees of freedom to
6.

The following CONTRAST statement reproduces theF-test forA whenBlock and
A*Block are considered fixed effects (the narrow inference space):

contrast ’A narrow’
A 1 -1 0
A*B .5 .5 -.5 -.5 0 0 |
A*Block .25 .25 .25 .25

-.25 -.25 -.25 -.25
0 0 0 0 ,

A 1 0 -1
A*B .5 .5 0 0 -.5 -.5 |
A*Block .25 .25 .25 .25

0 0 0 0
-.25 -.25 -.25 -.25 ;

The preceding contrast does not contain coefficients forB andBlock because they
cancel out in estimated differences between levels ofA. Coefficients forB andBlock
are necessary when estimating the mean of one of the levels ofA in the narrow infer-
ence space (see Example 41.1 on page 2175).
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If the elements ofL are not specified for an effect that contains a specified effect, then
the elements of the specified effect are automatically “filled in” over the levels of the
higher-order effect. This feature is designed to preserve estimability for cases when
there are complex higher-order effects. The coefficients for the higher-order effect
are determined by equitably distributing the coefficients of the lower-level effect as
in the construction of least squares means. In addition, if the intercept is specified, it is
distributed over all classification effects that are not contained by any other specified
effect. If an effect is not specified and does not contain any specified effects, then
all of its coefficients inL are set to 0. You can override this behavior by specifying
coefficients for the higher-order effect.

If too many values are specified for an effect, the extra ones are ignored; if too few
are specified, the remaining ones are set to 0. If no random effects are specified,
the vertical bar can be omitted; otherwise, it must be present. If a SUBJECT effect
is used in the RANDOM statement, then the coefficients specified for the effects in
the RANDOM statement are equitably distributed across the levels of the SUBJECT
effect. You can use the E option to see exactly whatL matrix is used.

The SUBJECT and GROUP options in the CONTRAST statement are useful for
the case when a SUBJECT= or GROUP= variable appears in the RANDOM state-
ment, and you want to contrast different subjects or groups. By default, CONTRAST
statement coefficients on random effects are distributed equally across subjects and
groups.

PROC MIXED handles missing level combinations of classification variables simi-
larly to the way PROC GLM does. Both procedures delete fixed-effects parameters
corresponding to missing levels in order to preserve estimability. However, PROC
MIXED does not delete missing level combinations for random-effects parameters
because linear combinations of the random-effects parameters are always estimable.
These conventions can affect the way you specify your CONTRAST coefficients.

The CONTRAST statement computes the statistic

F =

� b�b

�0
L0(L0 bCL)�1L � b�b


�
rank(L)

and approximates its distribution with anF-distribution. In this expression,bC is
an estimate of the generalized inverse of the coefficient matrix in the mixed model
equations. See the “Inference and Test Statistics” section on page 2155 for more
information on thisF-statistic.

The numerator degrees of freedom in theF-approximation isrank(L), and the de-
nominator degrees of freedom is taken from the “Tests of Fixed Effects” table and
corresponds to the final effect you list in the CONTRAST statement. You can change
the denominator degrees of freedom by using the DF= option.

You can specify the following options in the CONTRAST statement after a slash (/).
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CHISQ
requests that�2-tests be performed in addition to anyF-tests. A�2-statistic equals its
correspondingF -statistic times the associate numerator degrees of freedom, and this
same degrees of freedom is used to compute thep-value for the�2-test. Thisp-value
will always be less than that for theF -test, as it effectively corresponds to anF -test
with infinite denominator degrees of freedom.

DF=number
specifies the denominator degrees of freedom for theF-test. The default is the de-
nominator degrees of freedom taken from the “Tests of Fixed Effects” table and cor-
responds to the final effect you list in the CONTRAST statement.

E
requests that theL matrix coefficients for the contrast be displayed. For ODS pur-
poses, the label of this “L Matrix Coefficients” table is “Coefficients”.

GROUP coeffs
GRP coeffs

sets up random-effect contrasts between different groups when a GROUP= variable
appears in the RANDOM statement. By default, CONTRAST statement coefficients
on random effects are distributed equally across groups.

SINGULAR=number
tunes the estimability checking. Ifv is a vector, define ABS(v) to be the absolute
value of the element ofv with the largest absolute value. If ABS(K0�K0T) is greater
than C*numberfor any row ofK0 in the contrast, thenK is declared nonestimable.
HereT is the Hermite form matrix(X0X)�X0X, and C is ABS(K0) except when it
equals 0, and then C is 1. The value fornumbermust be between 0 and 1; the default
is 1E�4.

SUBJECT coeffs
SUB coeffs

sets up random-effect contrasts between different subjects when a SUBJECT= vari-
able appears on the RANDOM statement. By default, CONTRAST statement coeffi-
cients on random effects are distributed equally across subjects.

ESTIMATE Statement

ESTIMATE ’label’ < fixed-effect values . . .>
< j random-effect values . . .> , . . .< / options > ;

The ESTIMATE statement is exactly like a CONTRAST statement, except only one-
row L matrices are permitted. The actual estimate,L0bp, is displayed along with its
approximate standard error. An approximatet-test thatL0bp = 0 is also produced.

PROC MIXED selects the degrees of freedom to match those displayed in the “Tests
of Fixed Effects” table for the final effect you list in the ESTIMATE statement. You
can modify the degrees of freedom using the DF= option.
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If PROC MIXED finds the fixed-effects portion of the specified estimate to be non-
estimable, then it displays “Non-est” for the estimate entries.

The following examples of ESTIMATE statements compute the mean of the first level
of A in the split-plot example (see Example 41.1 on page 2175) for various inference
spaces.

estimate ’A1 mean narrow’ intercept 1
A 1 B .5 .5 A*B .5 .5 |
block .25 .25 .25 .25
A*Block .25 .25 .25 .25

0 0 0 0
0 0 0 0;

estimate ’A1 mean intermed’ intercept 1
A 1 B .5 .5 A*B .5 .5 |
Block .25 .25 .25 .25;

estimate ’A1 mean broad’ intercept 1
A 1 B .5 .5 A*B .5 .5;

The construction of theL vector for an ESTIMATE statement follows the same rules
as listed under the CONTRAST statement.

You can specify the following options in the ESTIMATE statement after a slash (/).

ALPHA= number
requests that at-type confidence interval be constructed with confidence level
1� number. The value ofnumbermust be between 0 and 1; the default is 0.05.

CL
requests thatt-type confidence limits be constructed. The confidence level is 0.95 by
default; this can be changed with the ALPHA= option.

DF=number
specifies the degrees of freedom for thet-test and confidence limits. The default is
the denominator degrees of freedom taken from the “Tests of Fixed Effects” table and
corresponds to the final effect you list in the ESTIMATE statement.

DIVISOR=number
specifies a value by which to divide all coefficients so that fractional coefficients can
be entered as integer numerators.

E
requests that theL matrix coefficients be displayed. For ODS purposes, the label of
this “L Matrix Coefficients” table is “Coefficients”.

GROUP coeffs
GRP coeffs

sets up random-effect contrasts between different groups when a GROUP= variable
appears in the RANDOM statement. By default, ESTIMATE statement coefficients
on random effects are distributed equally across groups.
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LOWER
LOWERTAILED

requests that thep-value for thet-test be based only on values less than thet-statistic.
A two-tailed test is the default. A lower-tailed confidence limit is also produced if
you specify the CL option.

SINGULAR=number
tunes the estimability checking as documented for the CONTRAST statement.

SUBJECT coeffs
SUB coeffs

sets up random-effect contrasts between different subjects when a SUBJECT= vari-
able appears in the RANDOM statement. By default, ESTIMATE statement coeffi-
cients on random effects are distributed equally across subjects.

For example, the ESTIMATE statement in the following code from Example 41.5
constructs the difference between the random slopes of the first two batches.

proc mixed data=rc;
class batch;
model y = month / s;
random int month / type=un sub=batch s;
estimate ’slope b1 - slope b2’ | month 1 / subject 1 -1;

run;

UPPER
UPPERTAILED

requests that thep-value for thet-test be based only on values greater than thet-
statistic. A two-tailed test is the default. An upper-tailed confidence limit is also
produced if you specify the CL option.

ID Statement
ID variables ;

The ID statement specifies which variables from the input data set are to be included
in the OUTP= and OUTPM= data sets from the MODEL statement. If you do not
specify an ID statement, then all variables are included in these data sets. Other-
wise, only the variables you list in the ID statement are included. Specifying an ID
statement with no variables prevents any variables from being included in these data
sets.

LSMEANS Statement
LSMEANS fixed-effects < / options > ;

The LSMEANS statement computes least-squares means (LS-means) of fixed effects.
As in the GLM procedure, LS-means arepredicted population margins—that is, they
estimate the marginal means over a balanced population. In a sense, LS-means are to
unbalanced designs as class and subclass arithmetic means are to balanced designs.
TheL matrix constructed to compute them is the same as theL matrix formed in
PROC GLM; however, the standard errors are adjusted for the covariance parameters
in the model.
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Each LS-mean is computed asLb� whereL is the coefficient matrix associated with
the least-squares mean andb� is the estimate of the fixed-effects parameter vector
(see the “Estimating� and 
 in the Mixed Model” section on page 2153). The
approximate standard errors for the LS-mean is computed as the square root of
L(X0 bV�1X)�L0.

LS-means can be computed for any effect in the MODEL statement that involves
CLASS variables. You can specify multiple effects in one LSMEANS statement or
in multiple LSMEANS statements, and all LSMEANS statements must appear after
the MODEL statement. As in the ESTIMATE statement, theL matrix is tested for
estimability, and if this test fails, PROC MIXED displays “Non-est” for the LS-means
entries.

Assuming the LS-mean is estimable, PROC MIXED constructs an approximatet-
test to test the null hypothesis that the associated population quantity equals zero.
By default, the denominator degrees of freedom for this test are the same as those
displayed for the effect in the “Tests of Fixed Effects” table (see the “Default Output”
section on page 2161).

You can specify the following options in the LSMEANS statement after a slash (/).

ADJUST=BON
ADJUST=DUNNETT
ADJUST=SCHEFFE
ADJUST=SIDAK
ADJUST=SIMULATE<(simoptions)>
ADJUST=SMM | GT2
ADJUST=TUKEY

requests a multiple comparison adjustment for thep-values and confidence lim-
its for the differences of LS-means. By default, PROC MIXED adjusts all
pairwise differences unless you specify ADJUST=DUNNETT, in which case
PROC MIXED analyzes all differences with a control level. The ADJUST= op-
tion implies the DIFF option (see page 2113).

The BON (Bonferroni) and SIDAK adjustments involve correction factors de-
scribed in Chapter 30, “The GLM Procedure,” and Chapter 43, “The MULTTEST
Procedure”; also refer to Westfall and Young (1993). When you specify AD-
JUST=TUKEY and your data are unbalanced, PROC MIXED uses the approximation
described in Kramer (1956). Similarly, when you specify ADJUST=DUNNETT and
the LS-means are correlated, PROC MIXED uses the factor-analytic covariance ap-
proximation described in Hsu (1992). The preceding references also describe the
SCHEFFE and SMM adjustments.

The SIMULATE adjustment computes adjustedp-values and confidence limits from
the simulated distribution of the maximum or maximum absolute value of a multivari-
atet random vector. All covariance parameters except the residual variance are fixed
at their estimated values throughout the simulation, potentially resulting in some un-
derdispersion. The simulation estimatesq, the true(1��)th quantile, where1�� is
the confidence coefficient. The default� is 0.05, and you can change this value with
the ALPHA= option in the LSMEANS statement.
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The number of samples is set so that the tail area for the simulatedq is within 
 of
1� � with 100(1 � �)% confidence. In equation form,

P (jF (bq)� (1� �)j � 
) = 1� �

wherebq is the simulatedq andF is the true distribution function of the maximum;
refer to Edwards and Berry (1987) for details. By default,
 = 0.005 and� = 0.01,
placing the tail area ofbq within 0.005 of 0.95 with 99% confidence. The ACC=
and EPS=simoptionsreset
 and �, respectively; the NSAMP=simoptionsets the
sample size directly; and the SEED=simoptionenables you to control the beginning
of the random number sequence (the clock time is used by default). For additional
description of these and other simulation options, see the “LSMEANS Statement”
section on page 1488 in Chapter 30, “The GLM Procedure.”

ALPHA= number
requests that at-type confidence interval be constructed for each of the LS-means
with confidence level1� number. The value ofnumbermust be between 0 and 1;
the default is 0.05.

AT variable = value
AT (variable-list) = (value-list)
AT MEANS

enables you to modify the values of the covariates used in computing LS-means. By
default, all covariate effects are set equal to their mean values for computation of
standard LS-means. The AT option enables you to assign arbitrary values to the co-
variates. Additional columns in the output table indicate the values of the covariates.

If there is an effect containing two or more covariates, the AT option sets the effect
equal to the product of the individual means rather than the mean of the product (as
with standard LS-means calculations). The AT MEANS option sets covariates equal
to their mean values (as with standard LS-means) and incorporates this adjustment to
cross products of covariates.

As an example, consider the following invocation of PROC MIXED:

proc mixed;
class A;
model Y = A X1 X2 X1*X2;
lsmeans A;
lsmeans A / at means;
lsmeans A / at X1=1.2;
lsmeans A / at (X1 X2)=(1.2 0.3);

run;

For the first two LSMEANS statements, the LS-means coefficient forX1 is x1 (the
mean ofX1) and forX2 is x2 (the mean ofX2). However, for the first LSMEANS
statement, the coefficient forX1*X2 is x1x2, but for the second LSMEANS state-
ment, the coefficient isx1 � x2. The third LSMEANS statement sets the coefficient
for X1 equal to1:2 and leaves it atx2 for X2, and the final LSMEANS statement sets
these values to1:2 and0:3, respectively.
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If a WEIGHT variable is present, it is used in processing AT variables. Also, ob-
servations with missing dependent variables are included in computing the covariate
means, unless these observations form a missing cell and the FULLX option in the
MODEL statement is not in effect. You can use the E option in conjunction with the
AT option to check that the modified LS-means coefficients are the ones you desire.

The AT option is disabled if you specify the BYLEVEL option.

BYLEVEL
requests PROC MIXED to process the OM data set by each level of the LS-mean
effect (LSMEANS effect) in question. For more details, see the OM option later in
this section.

CL
requests thatt-type confidence limits be constructed for each of the LS-means. The
confidence level is 0.95 by default; this can be changed with the ALPHA= option.

CORR
displays the estimated correlation matrix of the least-squares means as part of the
“Least Squares Means” table.

COV
displays the estimated covariance matrix of the least-squares means as part of the
“Least Squares Means” table.

DF=number
specifies the degrees of freedom for thet-test and confidence limits. The default is
the denominator degrees of freedom taken from the “Tests of Fixed Effects” table
corresponding to the LS-means effect.

DIFF<=difftype>
PDIFF<=difftype>

requests that differences of the LS-means be displayed. The optionaldifftypespecifies
which differences to produce, with possible values being ALL, CONTROL, CON-
TROLL, and CONTROLU. ThedifftypeALL requests all pairwise differences, and it
is the default. ThedifftypeCONTROL requests the differences with a control, which,
by default, is the first level of each of the specified LSMEANS effects.

To specify which levels of the effects are the controls, list the quoted formatted values
in parentheses after the keyword CONTROL. For example, if the effectsA, B, and
C are class variables, each having two levels, 1 and 2, the following LSMEANS
statement specifies the (1,2) level ofA*B and the (2,1) level ofB*C as controls:

lsmeans A*B B*C / diff=control(’1’ ’2’ ’2’ ’1’);

For multiple effects, the ordering of the list is significant, and you should check the
output to make sure that the controls are correct.

Two-tailed tests and confidence limits are associated with the CONTROLdifftype.
For one-tailed results, use either the CONTROLL or CONTROLUdifftype. The
CONTROLL difftype tests whether the noncontrol levels are significantly smaller
than the control; the upper confidence limits for the control minus the noncontrol

SAS OnlineDoc: Version 8



2114 � Chapter 41. The MIXED Procedure

levels are considered to be infinity and are displayed as missing. Conversely, the
CONTROLUdifftypetests whether the noncontrol levels are significantly larger than
the control; the upper confidence limits for the noncontrol levels minus the control
are considered to be infinity and are displayed as missing.

If you want to perform multiple comparison adjustments on the differences of LS-
Means, use the ADJUST= option. For DIFF=ALL (the default), ADJUST=TUKEY
is the default method, and in all other instances, the default ADJUST= option is
DUNNETT. If there is a conflict between the DIFF= and ADJUST= options, the
ADJUST= option takes precedence.

The differences of the LS-means are displayed in a table titled “Differences of Least
Squares Means.” For ODS purposes, the table name is “Diffs.”

E
requests that theL matrix coefficients for all LSMEANS effects be displayed. For
ODS purposes, the label of this “L Matrix Coefficients” table is “Coefficients”.

OM<=OM-data-set>
OBSMARGINS<=OM-data-set>

specifies a potentially different weighting scheme for the computation of LS-means
coefficients. The standard LS-means have equal coefficients across classification ef-
fects; however, the OM option changes these coefficients to be proportional to those
found inOM-data-set. This adjustment is reasonable when you want your inferences
to apply to a population that is not necessarily balanced but has the margins observed
in OM-data-set.

By default, OM-data-setis the same as the analysis data set. You can optionally
specify another data set that describes the population for which you want to make
inferences. This data set must contain all model variables except for the dependent
variable (which is ignored if it is present). In addition, the levels of all CLASS
variables must be the same as those occurring in the analysis data set. Specifying
anOM-data-setenables you to construct arbitrarily weighted LS-means.

In computing the observed margins, PROC MIXED uses all observations for which
there are no missing or invalid independent variables, including those for which there
are missing dependent variables. Also, ifOM-data-sethas a WEIGHT variable,
PROC MIXED uses weighted margins to construct the LS-means coefficients. If
OM-data-setis balanced, the LS-means are unchanged by the OM option.

The BYLEVEL option modifies the observed-margins LS-means. Instead of comput-
ing the margins across all ofOM-data-set, PROC MIXED computes separate margins
for each level of the LSMEANS effect in question. The resulting LS-means are ac-
tually equal to raw means in this case, but their estimated standard errors account for
the covariance structure that you have specified. If the AT option is specified, the
BYLEVEL option disables it.

You can use the E option in conjunction with either the OM or BYLEVEL option to
check that the modified LS-means coefficients are the ones you desire. It is possible
that the modified LS-means are not estimable when the standard ones are, or vice
versa. Nonestimable LS-means are noted as “Non-est” in the output.
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PDIFF
is the same as the DIFF option. See the description of the DIFF option on page 2113.

SINGULAR=number
tunes the estimability checking as documented on the “CONTRAST Statement” sec-
tion on page 2105.

SLICE= fixed-effect
SLICE= (fixed-effects)

specifies effects by which to partition interaction LSMEANS effects. This can pro-
duce what are known as tests of simple effects (Winer 1971). For example, suppose
thatA*B is significant, and you want to test the effect ofA for each level ofB. The
appropriate LSMEANS statement is

lsmeans A*B / slice=B;

This code tests for the simple main effects ofA for B, which are calculated by extract-
ing the appropriate rows from the coefficient matrix for theA*B LS-means and using
them to form anF-test. See the “Inference and Test Statistics” section on page 2155
for more information on thisF-test.

The SLICE option produces a table titled “Tests of Effect Slices.” For ODS purposes,
the table name is “Slices.”

MAKE Statement

MAKE ’table’ OUT=SAS-data-set ;

The MAKE statement has been retained in Versions 7 and 8 only for backwards
compatibility with Version 6. You are strongly encouraged to convert all of your
MAKE statements to ODS statements, as MAKE will probably be discontinued in
future releases. Also, the NOPRINT option is no longer available in the MAKE
statement. Refer to Table 41.6 on page 2166 for examples of how to convert MAKE
statements into ODS statements.

The MAKE statement converts any table produced in PROC MIXED to a SAS data
set. You can specify SAS data set options in parentheses after the data set name.

The valid values fortableare listed in Table 41.7 on page 2166. Thetablenames are
not case sensitive, but must be enclosed in single quotes. Table 41.8 on page 2169
lists the variable names in the created data sets.

See the “Changes in Output” section on page 2166 for further information.
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MODEL Statement

MODEL dependent = < fixed-effects >< / options >;

The MODEL statement names a single dependent variable and the fixed effects,
which determine theX matrix of the mixed model (see the “Parameterization of
Mixed Models” section on page 2157 for details). The specification of effects is the
same as in the GLM procedure; however, unlike PROC GLM, you do not specify
random effects in the MODEL statement. The MODEL statement is required.

An intercept is included in the fixed-effects model by default. If no fixed effects are
specified, only this intercept term is fit. The intercept can be removed by using the
NOINT option.

You can specify the following options in the MODEL statement after a slash (/).

ALPHA= number
requests that at-type confidence interval be constructed for each of the fixed-effects
parameters with confidence level1� number. The value ofnumbermust be between
0 and 1; the default is 0.05.

ALPHAP= number
requests that at-type confidence interval be constructed for the predicted values with
confidence level1� number. The value ofnumbermust be between 0 and 1; the
default is 0.05.

CHISQ
requests that�2-tests be performed for all specified effects in addition to theF-tests.
Type III tests are the default; you can produce the Type I and Type II tests using the
HTYPE= option.

CL
requests thatt-type confidence limits be constructed for each of the fixed-effects pa-
rameter estimates. The confidence level is 0.95 by default; this can be changed with
the ALPHA= option.

CONTAIN
has the same effect as the DDFM=CONTAIN option.

CORRB
produces the approximate correlation matrix of the fixed-effects parameter estimates.
For ODS purposes, the label for this table is “CorrB.”

COVB
produces the approximate variance-covariance matrix of the fixed-effects parameter
estimatesb�. By default, this matrix equals(X0 bV�1X)� and results from sweeping
(X y)0 bV�1(X y) on all but its last pivot and removing they border. The EMPIR-
ICAL option in the PROC MIXED statement changes this matrix into “empirical
sandwich” form, as described on page 2100. For ODS purposes, the label for this
table is “CovB.”
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COVBI
produces the inverse of the approximate variance-covariance matrix of the fixed-
effects parameter estimates. For ODS purposes, the label for this table is “InvCovB.”

DDF=value-list
enables you to specify your own denominator degrees of freedom for the fixed effects.
The value-list specification is a list of numbers or missing values (.) separated by
commas. The degrees of freedom should be listed in the order in which the effects
appear in the “Tests of Fixed Effects” table. If you want to retain the default degrees
of freedom for a particular effect, use a missing value for its location in the list. For
example,

model Y = A B A*B / ddf=3,.,4.7;

assigns 3 denominator degrees of freedom toA and 4.7 toA*B, while those forB
remain the same.

DDFM=CONTAIN
DDFM=BETWITHIN
DDFM=RESIDUAL
DDFM=SATTERTH
DDFM=KENWARDROGER

specifies the method for computing the denominator degrees of freedom for the
tests of fixed effects resulting from the MODEL, CONTRAST, ESTIMATE, and
LSMEANS statements.

The DDFM=CONTAIN option invokes thecontainment methodto compute denom-
inator degrees of freedom, and it is the default when you specify a RANDOM state-
ment. The containment method is carried out as follows: Denote the fixed effect in
questionA, and search the RANDOM effect list for the effects thatsyntacticallycon-
tainA. For example, the RANDOM effectB(A) containsA, but the RANDOM effect
C does not, even if it has the same levels asB(A).

Among the RANDOM effects that containA, compute their rank contribution to the
(X Z) matrix. The DDF assigned toA is the smallest of these rank contributions. If
no effects are found, the DDF forA is set equal to the residual degrees of freedom,
N � rank(X Z). This choice of DDF matches the tests performed for balanced split-
plot designs and should be adequate for moderately unbalanced designs.

Caution: If you have aZmatrix with a large number of columns, the overall memory
requirements and the computing time after convergence can be substantial for the
containment method. If it is too large, you may want to use the DDFM=BETWITHIN
option.

The DDFM=BETWITHIN option is the default for REPEATED statement specifica-
tions (with no RANDOM statements). It is computed by dividing the residual degrees
of freedom into between-subject and within-subject portions. PROC MIXED then
checks whether a fixed effect changes within any subject. If so, it assigns within-
subject degrees of freedom to the effect; otherwise, it assigns the between-subject
degrees of freedom to the effect (refer to Schluchter and Elashoff 1990). If there are
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multiple within-subject effects containing classification variables, the within-subject
degrees of freedom is partitioned into components corresponding to the subject-by-
effect interactions.

One exception to the preceding method is the case when you have specified no RAN-
DOM statements and a REPEATED statement with the TYPE=UN option. In this
case, all effects are assigned the between-subject degrees of freedom to provide for
better small-sample approximations to the relevant sampling distributions.

The DDFM=RESIDUAL option performs all tests using the residual degrees of free-
dom,n� rank(XZ), wheren is the number of observations.

The DDFM=SATTERTH option performs a general Satterthwaite approximation for
the denominator degrees of freedom, computed as follows. LetC = (X 0V �1X)�,
where� denotes a generalized inverse, and let� be the vector of unknown parameters
in V . Let Ĉ and�̂ be the corresponding estimates.

We first consider the one-dimensional case, and consider` to be a vector defining
an estimable linear combination of�. The Satterthwaite degrees of freedom for the
t-statistic

t =
`�̂p
`Ĉ`0

is computed as

� =
2(`Ĉ`0)2

g0Ag

whereg is the gradient of̀C`0 with respect to�, evaluated at̂�, andA is the asymp-
totic variance-covariance matrix of̂� obtained from the second derivative matrix of
the likelihood equations.

For the multi-dimensional case, letL be an estimable contrast matrix of rankq > 1.
The Satterthwaite denominator degrees of freedom for theF -statistic

F =
�̂0L0(LĈL0)�1L�̂

q

is computed by first performing the spectral decompositionLĈL0 = P 0DP where
P is an orthogonal matrix of eigenvectors andD is a diagonal matrix of eigenvalues,
both of dimensionq � q. Define`m to be themth row ofPL, and let

�m =
2(Dm)2

g0mAgm

whereDm is themth diagonal element ofD andgm is the gradient of̀mC`0m with
respect to�, evaluated at̂�. Then let

E =

qX
m=1

�m
�m � 2

I(�m > 2)
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where the indicator function eliminates terms for which�m � 2. The degrees of
freedom forF are then computed as

� =
2E

E � q

providedE > q; otherwise� is set to zero.

This method is a generalization of the techniques described in Giesbrecht and Burns
(1985), McLean and Sanders (1988), and Fai and Cornelius (1996). The method can
also include estimated random effects. In this case, append
̂ to �̂ and changêC to be
the inverse of the coefficient matrix in the mixed model equations. The calculations
require extra memory to holdc matrices that are the size of the mixed model equa-
tions, wherec is the number of covariance parameters. In the notation of Table 41.9
on page 2171, this is approximately8q(p+g)(p+g)=2 bytes. Extra computing time is
also required to process these matrices. The Satterthwaite method implemented here
is intended to produce an accurateF-approximation; however, the results may differ
from those produced by PROC GLM. Also, the small sample properties of this ap-
proximation have not been extensively investigated for the various models available
with PROC MIXED.

The DDFM=KENWARDROGER option performs the degrees-of-freedom calcula-
tions detailed by Kenward and Roger (1997). This approximation involves inflat-
ing the estimated variance-covariance matrix of the fixed and random effects by the
method proposed by Prasad and Rao (1990) and Harville and Jeske (1992); refer also
to Kackar and Harville (1984). Satterthwaite-type degrees of freedom are then com-
puted based on this adjustment. By default, the observed information matrix of the
covariance parameter estimates is used in the calculations.

This method changes output in the following tables (listed in Table 41.7 on
page 2166): Contrast, CorrB, CovB, Diffs, Estimates, InvCovB, LSMeans, MMEq,
MMEqSol, Slices, SolutionF, SolutionR, Tests1–Tests3. The OUTP= and OUTPM=
data sets are also affected.

E
requests that Type I, Type II, and Type IIIL matrix coefficients be displayed for all
specified effects. For ODS purposes, the labels of the tables are “Coefficients”.

E1
requests that Type IL matrix coefficients be displayed for all specified effects. For
ODS purposes, the label of this table is “Coefficients”.

E2
requests that Type IIL matrix coefficients be displayed for all specified effects. For
ODS purposes, the label of this table is “Coefficients”.

E3
requests that Type IIIL matrix coefficients be displayed for all specified effects. For
ODS purposes, the label of this table is “Coefficients”.
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FULLX
requests that columns of theXmatrix that consist entirely of zeros not be eliminated
from X; they are eliminated by default. For a column corresponding to a missing
cell to be added toX, its particular levels must be present in at least one observa-
tion in the analysis data set along with a missing dependent variable. The use of
the FULLX option can impact coefficient specifications in the CONTRAST and ES-
TIMATE statements, as well as covariate coefficients from LSMEANS statements
specified with the AT MEANS option.

HTYPE=value-list
indicates the type of hypothesis test to perform on the fixed effects. Valid entries
for value are 1, 2, and 3; the default value is 3. You can specify several types by
separating the values with a comma or a space. The ODS table names are “Tests1”
for the Type 1 tests, “Tests2” for the Type 2 tests, and “Tests3” for Type 3 tests.

NOCONTAIN
has the same effect as the DDFM=RESIDUAL option.

NOINT
requests that no intercept be included in the model. An intercept is included by de-
fault.

NOTEST
specifies that no hypothesis tests be performed for the fixed effects.

OUTP=SAS-data-set
OUTPRED=SAS-data-set

specifies an output data set containing predicted values and related quantities. This
option replaces the P option from Version 6.

Predicted values are formed by using the rows from (X Z) asL matrices. The pre-
dicted values from the original data are, thus,Xb�+Zb
. Their approximate standard
errors of prediction are formed from the quadratic form ofL with bC defined in the
“Statistical Properties” section on page 2154. The L95 and U95 variables provide a
t-type confidence interval for the predicted values, and they correspond to the L95M
and U95M variables from the GLM and REG procedures for fixed-effect models. The
residuals are the observed minus the predicted values. Predicted values for data points
other than those observed can be obtained by using missing dependent variables in
your input data set.

Specifications that have a REPEATED statement with the SUBJECT= option and
missing dependent variables compute predicted values using empirical best linear un-
biased prediction (EBLUP). Using hats(^) to denote estimates, the EBLUP formula
is

m̂ = Xm�̂ + ĈmV̂
�1(y �X�̂)

wherem represents a hypothetical realization of a missing data vector with associated
design matrixXm. The matrixCm is the model-based covariance matrix between
m and the observed datay, and other notation is as presented in the “Mixed Models
Theory” section beginning on page 2145.
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The estimated prediction variance is as follows:

V̂ar(m̂�m) = V̂m � ĈmV̂
�1ĈT

m
+

[Xm � ĈmV̂
�1X](XT V̂�1X)�[Xm � ĈmV̂

�1X]T

whereVm is the model-based variance matrix ofm. For further details, refer to
Henderson (1984) and Harville (1990). This feature can be useful for forecasting
time series or for computing spatial predictions.

By default, all variables from the input data set are included in the OUTP= data set.
You can select a subset of these variables using the ID statement.

OUTPM=SAS-data-set
OUTPREDM=SAS-data-set

specifies an output data set containing predicted means and related quantities. This
option replaces the PM option from Version 6.

The output data set is of the same form as that resulting from the OUTP= option,
except that the predicted values do not incorporate the EBLUP valuesZb
 nor do they
use the EBLUPs for specifications that have a REPEATED statement with the SUB-
JECT= option and missing dependent variables. The predicted values are formed as
Xb� in the OUTPM= data set, and standard errors are quadratic forms in the approx-
imate variance-covariance matrix ofb� as displayed by the COVB option.

By default, all variables from the input data set are included in the OUTPM= data set.
You can select a subset of these variables using the ID statement.

SINGULAR=number
tunes the sensitivity in sweeping. If a diagonal pivot element is less than D*number
as PROC MIXED sweeps a matrix, the associated column is declared to be linearly
dependent upon previous columns, and the associated parameter is set to 0. The value
D is the original diagonal element of the matrix. The default is 1E4 times the machine
epsilon; this product is approximately 1E�12 on most computers.

SINGCHOL=number
tunes the sensitivity in computing Cholesky roots. If a diagonal pivot element is less
than D*numberas PROC MIXED performs the Cholesky decomposition on a matrix,
the associated column is declared to be linearly dependent upon previous columns and
is set to0. The value D is the original diagonal element of the matrix. The default
for numberis 1E4 times the machine epsilon; this product is approximately 1E�12
on most computers.

SINGRES=number
sets the tolerance for which the residual variance is considered to be zero. The default
is 1E4 times the machine epsilon; this product is approximately 1E�12 on most
computers.

SAS OnlineDoc: Version 8



2122 � Chapter 41. The MIXED Procedure

SOLUTION
S

requests that a solution for the fixed-effects parameters be produced. Using notation
from the “Mixed Models Theory” section beginning on page 2145, the fixed-effects
parameter estimates arebb and their approximate standard errors are the square roots
of the diagonal elements of(X0 bV�1X)�. You can output this approximate variance
matrix with the COVB option or modify it with the EMPIRICAL option in the PROC
MIXED statement.

Along with the estimates and their approximate standard errors, at-statistic is com-
puted as the estimate divided by its standard error. The degrees of freedom for this
t-statistic matches the one appearing in the “Tests of Fixed Effects” table under the
effect containing the parameter. The “Pr >jtj” column contains the two-tailedp-
value corresponding to thet-statistic and associated degrees of freedom. You can use
the CL option to request confidence intervals for all of the parameters; they are con-
structed around the estimate by using a radius of the standard error times a percentage
point from thet-distribution.

XPVIX
is an alias for the COVBI option.

XPVIXI
is an alias for the COVB option.

ZETA=number
tunes the sensitivity in forming Type III functions. Any element in the estimable
function basis with an absolute value less thannumberis set to 0. The default is
1E�8.

PARMS Statement

PARMS (value-list) . . .< / options > ;

The PARMS statement specifies initial values for the covariance parameters, or it
requests a grid search over several values of these parameters. You must specify the
values in the order in which they appear in the “Covariance Parameter Estimates”
table.

Thevalue-listspecification can take any of several forms:

m a single value

m1;m2; : : : ;mn several values

m to n a sequence wherem equals the starting value,n equals the ending
value, and the increment equals 1

m to n by i a sequence wherem equals the starting value,n equals the ending
value, and the increment equalsi

m1;m2 tom3 mixed values and sequences
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You can use the PARMS statement to input known parameters. Referring to the split-
plot example (Example 41.1 on page 2175), suppose the three variance components
are known to be 60, 20, and 6. The SAS code to fix the variance components at these
values is as follows:

proc mixed data=sp noprofile;
class Block A B;
model Y = A B A*B;
random Block A*Block;
parms (60) (20) (6) / noiter;

run;

The NOPROFILE option requests PROC MIXED to refrain from profiling the resid-
ual variance parameter during its calculations, thereby enabling its value to be held at
6 as specified in the PARMS statement. The NOITER option prevents any Newton-
Raphson iterations so that the subsequent results are based on the given variance
components. You can also specify known parameters ofG using the GDATA= op-
tion in the RANDOM statement.

If you specify more than one set of initial values, PROC MIXED performs a grid
search of the likelihood surface and uses the best point on the grid for subsequent
analysis. Specifying a large number of grid points can result in long computing
times. The grid search feature is also useful for exploring the likelihood surface.
See Example 41.3 on page 2192.

The results from the PARMS statement are the values of the parameters on the spec-
ified grid (denoted by CovP1–CovPn), the residual variance (possibly estimated) for
models with a residual variance parameter, and various functions of the likelihood.

For ODS purposes, the label of the “Parameter Search” table is “ParmSearch.”

You can specify the following options in the PARMS statement after a slash (/).

HOLD=value-list
EQCONS=value-list

specifies which parameter values PROC MIXED should hold to equal the specified
values. For example, the statement

parms (5) (3) (2) (3) / hold=1,3;

constrains the first and third covariance parameters to equal 5 and 2, respectively.

LOGDETH
evaluates the log determinant of the Hessian matrix for each point specified in the
PARMS statement. A Log Det H column is added to the “Parameter Search” table.

LOWERB=value-list
enables you to specify lower boundary constraints on the covariance parameters. The
value-listspecification is a list of numbers or missing values (.) separated by commas.
You must list the numbers in the order that PROC MIXED uses for the covariance pa-
rameters, and each number corresponds to the lower boundary constraint. A missing
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value instructs PROC MIXED to use its default constraint, and if you do not specify
numbers for all of the covariance parameters, PROC MIXED assumes the remaining
ones are missing.

An example for which this option is useful is when you want to constrain theG

matrix to be positive definite in order to avoid the more computationally intensive
algorithms required whenG becomes singular. The corresponding code for a random
coefficients model is as follows:

proc mixed;
class person;
model y = time;
random int time / type=fa0(2) sub=person;
parms / lowerb=1e-4,.,1e-4;

run;

Here the FA0(2) structure is used in order to specify a Cholesky root parameteriza-
tion for the2 � 2 unstructured blocks inG. This parameterization ensures that the
G matrix is nonnegative definite, and the PARMS statement then ensures that it is
positive definite by constraining the two diagonal terms to be greater than or equal to
1E�4.

NOBOUND
requests the removal of boundary constraints on covariance parameters. For exam-
ple, variance components have a default lower boundary constraint of 0, and the
NOBOUND option allows their estimates to be negative.

NOITER
requests that no Newton-Raphson iterations be performed and that PROC MIXED
use the best value from the grid search to perform inferences. By default, iterations
begin at the best value from the PARMS grid search.

NOPROFILE
specifies a different computational method for the residual variance during the grid
search. By default, PROC MIXED estimates this parameter using the profile likeli-
hood when appropriate, and this estimate is displayed in the Variance column of the
“Parameter Search” table. The NOPROFILE option suppresses the profiling and uses
the actual value of the specified variance in the likelihood calculations.

OLS
requests starting values corresponding to the usual general linear model. Specifically,
all variances and covariances are set to zero except for the residual variance, which
is set equal to its ordinary least-squares (OLS) estimate. This option is useful when
the default MIVQUE0 procedure produces poor starting values for the optimization
process.

PARMSDATA= SAS-data-set
PDATA=SAS-data-set

reads in covariance parameter values from a SAS data set.. The data set should con-
tain the EST or COVP1–COVPn variables. (Note: In releases prior to 6.12, the data
set should contain EST or COL1–COLn variables.)
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RATIOS
indicates that ratios with the residual variance are specified instead of the covariance
parameters themselves. The default is to use the individual covariance parameters.

UPPERB=value-list
enables you to specify upper boundary constraints on the covariance parameters. The
value-listspecification is a list of numbers or missing values (.) separated by commas.
You must list the numbers in the order that PROC MIXED uses for the covariance pa-
rameters, and each number corresponds to the upper boundary constraint. A missing
value instructs PROC MIXED to use its default constraint, and if you do not spec-
ify numbers for all of the covariance parameters, PROC MIXED assumes that the
remaining ones are missing.

PRIOR Statement

PRIOR < distribution >< / options > ;

The PRIOR statement enables you to carry out a sampling-based Bayesian analy-
sis in PROC MIXED. It currently operates only with variance component models.
The analysis produces a SAS data set containing a pseudo-random sample from the
joint posterior density of the variance components and other parameters in the mixed
model.

The posterior analysis is performed after all other PROC MIXED computations. It
begins with the “Posterior Sampling Information” table, which provides basic infor-
mation about the posterior sampling analysis, including the prior densities, sampling
algorithm, sample size, and random number seed. For ODS purposes, the name of
this table is “Posterior.”

By default, PROC MIXED uses an independence chain algorithm in order to gen-
erate the posterior sample (Tierney 1994). This algorithm works by generating a
pseudo-random proposal from a convenient base distribution, chosen to be as close
as possible to the posterior. The proposal is then retained in the sample with proba-
bility proportional to the ratio of weights constructed by taking the ratio of the true
posterior to the base density. If a proposal is not accepted, then a duplicate of the
previous observation is added to the chain.

In selecting the base distribution, PROC MIXED makes use of the fact that the fixed-
effects parameters can be analytically integrated out of the joint posterior, leaving the
marginal posterior density of the variance components. In order to better approximate
the marginal posterior density of the variance components, PROC MIXED transforms
them using the MIVQUE(0) equations. You can display the selected transformation
with the PTRANS option or specify your own with the TDATA= option. The density
of the transformed parameters is then approximated by a product of inverted gamma
densities (refer to Gelfand et al. 1990).

To determine the parameters for the inverted gamma densities, PROC MIXED eval-
uates the logarithm of the posterior density over a grid of points in each of the trans-
formed parameters, and you can display the results of this search with the PSEARCH
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option. PROC MIXED then performs a linear regression of these values on the log-
arithm of the inverted gamma density. The resulting base densities are displayed in
the “Base Densities” table; for ODS purposes, the name of this table is “BaseDen.”
You can input different base densities with the BDATA= option.

At the end of the sampling, the “Acceptance Rates” table displays the acceptance
rate computed as the number of accepted samples divided by the total number of
samples generated. For ODS purposes, the label of the “Acceptance Rates” table is
“AcceptanceRates.”

The OUT= option specifies the output data set containing the posterior sample. PROC
MIXED automatically includes all variance component parameters in this data set
(labeled COVP1–COVPn), the Type IIIF-statistics constructed as in Ghosh (1992)
discussing Schervish (1992) (labeled T3Fn), the log values of the posterior (labeled
LOGF), the log of the base sampling density (labeled LOGG), and the log of their
ratio (labeled LOGRATIO). If you specify the SOLUTION option in the MODEL
statement, the data set also contains a random sample from the posterior density of
the fixed-effects parameters (labeled BETAn), and if you specify the SOLUTION
option in the RANDOM statement, the table contains a random sample from the
posterior density of the random-effects parameters (labeled GAMn). PROC MIXED
also generates additional variables corresponding to any CONTRAST, ESTIMATE,
or LSMEANS statement that you specify.

Subsequently, you can use SAS/INSIGHT, or the UNIVARIATE, CAPABILITY, or
KDE procedures to analyze the posterior sample.

The prior density of the variance components is, by default, a noninformative ver-
sion of Jeffreys’ prior (Box and Tiao 1973). You can also specify informative pri-
ors with the DATA= option or a flat (equal to 1) prior for the variance components.
The prior density of the fixed-effects parameters is assumed to be flat (equal to
1), and the resulting posterior is conditionally multivariate normal (conditioning on
the variance component parameters) with mean(X0V�1X)�X0V�1y and variance
(X0V�1X)�.

The distribution argument in the PRIOR statement determines the prior density for
the variance component parameters of your mixed model. Valid values are as follows.

DATA=
enables you to input the prior densities of the variance components used by the sam-
pling algorithm. This data set must contain the TYPE and PARM1–PARMn vari-
ables, wheren is the largest number of parameters among each of the base densities.
The format of the DATA= data set matches that created by PROC MIXED in the
“Base Densities” table, so you can output the densities from one run and use them as
input for a subsequent run.

JEFFREYS
specifies a noninformative reference version of Jeffreys’ prior constructed using the
square root of the determinant of the expected information matrix as in (1.3.92) of
Box and Tiao (1973). This is the default prior.

SAS OnlineDoc: Version 8



PRIOR Statement � 2127

FLAT
specifies a prior density equal to 1 everywhere, making the likelihood function the
posterior.

You can specify the following options in the PRIOR statement after a slash (/).

ALG=IC | INDCHAIN
ALG=IS | IMPSAMP
ALG=RS | REJSAMP
ALG=RWC | RWCHAIN

specifies the algorithm used for generating the posterior sample. The ALG=IC op-
tion requests an independence chain algorithm, and it is the default. The option
ALG=IS requests importance sampling, ALG=RS requests rejection sampling, and
ALG=RWC requests a random walk chain. For more information on these tech-
niques, refer to Ripley (1987), Smith and Gelfand (1992), and Tierney (1994).

BDATA=
enables you to input the base densities used by the sampling algorithm. This data
set must contain the TYPE and PARM1–PARMn variables, wheren is the largest
number of parameters among each of the base densities. The format of the BDATA=
data set matches that created by PROC MIXED in the “Base Densities” table, so you
can output the densities from one run and use them as input for a subsequent run.

GRID=(value-list)
specifies a grid of values over which to evaluate the posterior density. Thevalue-list
syntax is the same as in the PARMS statement (see page 2122), and you must specify
an output data set name with the OUTG= option.

GRIDT=(value-list)
specifies a transformed grid of values over which to evaluate the posterior density.
Thevalue-listsyntax is the same as in the PARMS statement (see page 2122), and
you must specify an output data set name with the OUTGT= option.

IFACTOR=number
is an alias for the SFACTOR= option.

LOGNOTE=number
instructs PROC MIXED to write a note to the SAS log after it generates the sample
corresponding to each multiple ofnumber. This is useful for monitoring the progress
of CPU-intensive runs.

LOGRBOUND=number
specifies the bounding constant for rejection sampling. The value ofnumberequals
the maximum oflog(f=g) over the variance component parameter space, wheref is
the posterior density andg is the product inverted gamma densities used to perform
rejection sampling.

When performing the rejection sampling, you may encounter the message

WARNING: The log ratio bound of LL was violated at sample XX.
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When this occurs, PROC MIXED reruns an optimization algorithm to determine a
new log upper bound and then restarts the rejection sampling. The resulting OUT=
data set contains all observations that have been generated; therefore, assuming that
you have requested N samples, you should retain only the final N observations in this
data set for analysis purposes.

NSAMPLE=number
specifies the number of posterior samples to generate. The default is 1000, but more
accurate results are obtained with larger samples such as 10000.

NSEARCH=number
specifies the number of posterior evaluations PROC MIXED makes for each trans-
formed parameter in determining the parameters for the inverted gamma densities.
The default is 20.

OUT=SAS-data-set
creates an output data set containing the sample from the posterior density.

OUTG=SAS-data-set
creates an output data set from the grid evaluations specified in the GRID= option.

OUTGT=SAS-data-set
creates an output data set from the transformed grid evaluations specified in the
GRIDT= option.

PSEARCH
displays the search used to determine the parameters for the inverted gamma densi-
ties. For ODS purposes, the name of the table is “Search.”

PTRANS
displays the transformation of the variance components. For ODS purposes, the name
of the table is “Trans.”

SEED=number
specifies a starting value for the random number generation in PROC MIXED. The
computer clock time is the default. You should use a seed whenever you want to
duplicate the sample in another run of PROC MIXED.

SFACTOR=number
enables you to adjust the range over which PROC MIXED searches the transformed
parameters in order to determine the parameters for the inverted gamma densities.
PROC MIXED determines the range by first transforming the estimates from the stan-
dard PROC MIXED analysis (REML, ML, or MIVQUE0, depending upon which es-
timation method you select). It then multiplies and divides the transformed estimates
by 2�numberto obtain upper and lower bounds, respectively. Transformed values
that produce negative variance components in the original scale are not included in
the search. The default value is 1;numbermust be greater than 0.5.

TDATA=
enables you to input the transformation of the covariance parameters used by the
sampling algorithm. This data set should contain the CovP1–CovPn variables. The
format of the TDATA= data set matches that created by PROC MIXED in the “Trans”
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table, so you can output the transformation from one run and use is as input for a
subsequent run.

TRANS=EXPECTED
TRANS=MIVQUE0
TRANS=OBSERVED

specifies the particular algorithm used to determine the transformation of the covari-
ance parameters. The default is MIVQUE0, indicating a transformation based on the
MIVQUE(0) equations. The other two options indicate the type of Hessian matrix
used in constructing the transformation via a Cholesky root.

UPDATE=number
is an alias for the LOGNOTE= option.

RANDOM Statement

RANDOM random-effects < / options > ;

The RANDOM statement defines the random effects constituting the
 vector in the
mixed model. It can be used to specify traditional variance component models (as in
the VARCOMP procedure) and to specify random coefficients. The random effects
can be classification or continuous, and multiple RANDOM statements are possible.

Using notation from the “Mixed Models Theory” section beginning on page 2145, the
purpose of the RANDOM statement is to define theZmatrix of the mixed model, the
random effects in the
 vector, and the structure ofG. TheZ matrix is constructed
exactly as theX matrix for the fixed effects, and theG matrix is constructed to
correspond with the effects constitutingZ. The structure ofG is defined by using the
TYPE= option described on page 2132.

You can specify INTERCEPT (or INT) as a random effect to indicate the intercept.
PROC MIXED does not include the intercept in the RANDOM statement by default
as it does in the MODEL statement.

You can specify the following options in the RANDOM statement after a slash (/).

ALPHA= number
requests that at-type confidence interval be constructed for each of the random effect
estimates with confidence level1� number. The value ofnumbermust be between
0 and 1; the default is 0.05.

CL
requests thatt-type confidence limits be constructed for each of the random effect
estimates. The confidence level is 0.95 by default; this can be changed with the
ALPHA= option.

G
requests that the estimatedG matrix be displayed. PROC MIXED displays blanks
for values that are 0. If you specify the SUBJECT= option, then the block of theG

matrix corresponding to the first subject is displayed. For ODS purposes, the name
of the table is “G.”
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GC
displays the lower-triangular Cholesky root of the estimatedG matrix according to
the rules listed under the G option. For ODS purposes, the name of the table is
“CholG.”

GCI
displays the inverse Cholesky root of the estimatedG matrix according to the rules
listed under the G option. For ODS purposes, the name of the table is “InvCholG.”

GCORR
displays the correlation matrix corresponding to the estimatedG matrix according
to the rules listed under the G option. For ODS purposes, the name of the table is
“GCorr.”

GDATA=SAS-data-set
requests that theGmatrix be read in from a SAS data set. ThisG matrix is assumed
to be known; therefore, onlyR-side parameters from effects in the REPEATED state-
ment are included in the Newton-Raphson iterations. If no REPEATED statement is
specified, then only a residual variance is estimated.

The information in the GDATA= data set can appear in one of two ways. The first is
a sparse representation for which you include ROW, COL, and VALUE variables to
indicate the row, column, and value ofG. All unspecified locations are assumed to
be 0. The second representation is for dense matrices. In it you include ROW and
COL1–COLn variables to indicate the row and columns ofG, which is a symmetric
matrix of ordern. For both representations, you must specify effects in the RANDOM
statement that generate aZ matrix that containsn columns. See Example 41.4 on
page 2199.

If you have more than one RANDOM statement, only one GDATA= option is re-
quired on any one of them, and the data set you specify must contain the entireG

matrix defined by all of the RANDOM statements.

If the GDATA= data set contains variance ratios instead of the variances themselves,
then use the RATIOS option.

Known parameters ofG can also be input using the PARMS statement with the
HOLD= option.

GI
displays the inverse of the estimatedG matrix according to the rules listed under the
G option. For ODS purposes, the name of the table is “InvG.”

GROUP=effect
GRP=effect

defines an effect specifying heterogeneity in the covariance structure ofG. All ob-
servations having the same level of the group effect have the same covariance param-
eters. Each new level of the group effect produces a new set of covariance parameters
with the same structure as the original group. You should exercise caution in defin-
ing the group effect, as strange covariance patterns can result with its misuse. Also,
the group effect can greatly increase the number of estimated covariance parameters,
which may adversely affect the optimization process.
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Continuous variables are permitted as arguments to the GROUP= option. PROC
MIXED does not sort by the values of the continuous variable; rather, it considers the
data to be from a new subject or group whenever the value of the continuous variable
changes from the previous observation. Using a continuous variable decreases exe-
cution time for models with a large number of subjects or groups and also prevents
the production of a large “Class Levels Information” table.

LDATA= SAS-data-set
reads the coefficient matrices associated with the TYPE=LIN(number) option. The
data set must contain the variables PARM, ROW, COL1–COLn, or PARM, ROW,
COL, VALUE. The PARM variable denotes which of thenumbercoefficient matrices
is currently being constructed, and the ROW, COL1–COLn, or ROW, COL, VALUE
variables specify the matrix values, as they do with the GDATA= option. Unspecified
values of these matrices are set equal to 0.

NOFULLZ
eliminates the columns inZ corresponding to missing levels of random effects in-
volving CLASS variables. By default, these columns are included inZ.

RATIOS
indicates that ratios with the residual variance are specified in the GDATA= data
set instead of the covariance parameters themselves. The default GDATA= data set
contains the individual covariance parameters.

SOLUTION
S

requests that the solution for the random-effects parameters be produced. Using no-
tation from the “Mixed Models Theory” section beginning on page 2145, these esti-
mates are the empirical best linear unbiased predictors (EBLUPs)b
 = bGZ0 bV�1(y�

Xb�). They can be useful for comparing the random effects from different experimen-
tal units and can also be treated as residuals in performing diagnostics for your mixed
model.

The numbers displayed in the SE Pred column of the “Solution for Random Effects”
table are not the standard errors of theb
 displayed in the Estimate column; rather,
they are the standard errors of predictionsb
i�
i, whereb
i is theith EBLUP and
i
is theith random-effect parameter.

SUBJECT=effect
SUB=effect

identifies the subjects in your mixed model. Complete independence is assumed
across subjects; thus, for the RANDOM statement, the SUBJECT= option produces
a block-diagonal structure inG with identical blocks. TheZ matrix is modified to
accommodate this block-diagonality. In fact, specifying a subject effect is equivalent
to nesting all other effects in the RANDOM statement within the subject effect.

Continuous variables are permitted as arguments to the SUBJECT= option. PROC
MIXED does not sort by the values of the continuous variable; rather, it considers
the data to be from a new subject or group whenever the value of the continuous vari-
able changes from the previous observation. Using a continuous variable decreases
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execution time for models with a large number of subjects or groups and also prevents
the production of a large “Class Levels Information” table.

When you specify the SUBJECT= option and a classification random effect, com-
putations are usually much quicker if the levels of the random effect are duplicated
within each level of the SUBJECT= effect.

TYPE=covariance-structure
specifies the covariance structure ofG. Valid values forcovariance-structureand
their descriptions are listed in Table 41.3 on page 2138 and Table 41.4 on page 2138.
Although a variety of structures are available, most applications call for either
TYPE=VC or TYPE=UN. The TYPE=VC (variance components) option is the de-
fault structure, and it models a different variance component for each random effect.

The TYPE=UN (unstructured) option is useful for correlated random coefficient mod-
els. For example,

random intercept age / type=un subject=person;

specifies a random intercept-slope model that has different variances for the intercept
and slope and a covariance between them. You can also use TYPE=FA0(2) here to
request aG estimate that is constrained to be nonnegative definite.

If you are constructing your own columns ofZ with continuous variables, you can
use the TYPE=TOEP(1) structure to group them together to have a common variance
component. If you desire to have different covariance structures in different parts of
G, you must use multiple RANDOM statements with different TYPE= options.

V<=value-list>
requests that blocks of the estimatedV matrix be displayed. The first block de-
termined by the SUBJECT= effect is the default displayed block. PROC MIXED
displays entries that are 0 as blanks in the table.

You can optionally use thevalue-listspecification, which indicates the subjects for
which blocks ofV are to be displayed. For example, the statement

random int time / type=un subject=person v=1,3,7;

displays block matrices for the first, third, and seventh persons. The table name for
ODS purposes is “V”.

VC<=value-list>
displays the Cholesky root of the blocks of the estimatedV matrix. Thevalue-list
specification is the same as in the V= option. The table name for ODS purposes is
“CholV”.

VCI<=value-list>
displays the inverse of the Cholesky root of the blocks of the estimatedV matrix.
Thevalue-listspecification is the same as in the V= option. The table name for ODS
purposes is “InvCholV”.
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VCORR<=value-list>
displays the correlation matrix corresponding to the blocks of the estimatedVmatrix.
Thevalue-listspecification is the same as in the V= option. The table name for ODS
purposes is “VCorr”.

VI<=value-list>
displays the inverse of the blocks of the estimatedVmatrix. Thevalue-listspecifica-
tion is the same as in the V= option. The table name for ODS purposes is “InvV”.

REPEATED Statement

REPEATED < repeated-effect >< / options > ;

The REPEATED statement is used to specify theR matrix in the mixed model. Its
syntax is different from that of the REPEATED statement in PROC GLM. If no RE-
PEATED statement is specified,R is assumed to be equal to�2I.

For many repeated measures models, no repeated effect is required in the REPEATED
statement. Simply use the SUBJECT= option to define the blocks ofR and the
TYPE= option to define their covariance structure. In this case, the repeated measures
data must be similarly ordered for each subject, and you must indicate all missing
response variables with periods in the input data set unless they all fall at the end of
a subject’s repeated response profile. These requirements are necessary in order to
inform PROC MIXED of the proper location of the observed repeated responses.

Specifying a repeated effect is useful when you do not want to indicate missing values
with periods in the input data set. The repeated effect must contain only classifica-
tion variables. Make sure that the levels of the repeated effect are different for each
observation within a subject; otherwise, PROC MIXED constructs identical rows in
R corresponding to the observations with the same level. This results in a singularR

and an infinite likelihood.

Whether you specify a REPEATED effect or not, the rows ofR for each subject are
constructed in the order that they appear in the input data set.

You can specify the following options in the REPEATED statement after a slash (/).

GROUP=effect
GRP=effect

defines an effect specifying heterogeneity in the covariance structure ofR. All ob-
servations having the same level of the GROUP effect have the same covariance pa-
rameters. Each new level of the GROUP effect produces a new set of covariance
parameters with the same structure as the original group. You should exercise cau-
tion in properly defining the GROUP effect, as strange covariance patterns can result
with its misuse. Also, the GROUP effect can greatly increase the number of estimated
covariance parameters, which may adversely affect the optimization process.

Continuous variables are permitted as arguments to the GROUP= option. PROC
MIXED does not sort by the values of the continuous variable; rather, it considers the
data to be from a new subject or group whenever the value of the continuous variable
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changes from the previous observation. Using a continuous variable decreases exe-
cution time for models with a large number of subjects or groups and also prevents
the production of a large “Class Levels Information” table.

HLM
produces a table of Hotelling-Lawley-McKeon statistics (McKeon 1974) for all fixed
effects whose levels change across data having the same level of the SUBJECT=
effect (thewithin-subjectfixed effects). This option applies only when you specify
a REPEATED statement with the TYPE=UN option and no RANDOM statements.
For balanced data, this model is equivalent to the multivariate model for repeated
measures in PROC GLM.

The Hotelling-Lawley-McKeon statistic has a slightly betterF approximation than
the Hotelling-Lawley-Pillai-Samson statistic (see the description of the HLPS option,
which follows). Both of the Hotelling-Lawley statistics can perform much better in
small samples than the defaultF statistic (Wright 1994).

Separate tables are produced for Type I, II, and III tests, according to the ones you
select. For ODS purposes, the labels for these tables are “HLM1,” “HLM2,” and
“HLM3,” respectively.

HLPS
produces a table of Hotelling-Lawley-Pillai-Samson statistics (Pillai and Samson
1959) for all fixed effects whose levels change across data having the same level
of the SUBJECT= effect (thewithin-subjectfixed effects). This option applies only
when you specify a REPEATED statement with the TYPE=UN option and no RAN-
DOM statements. For balanced data, this model is equivalent to the multivariate
model for repeated measures in PROC GLM, and this statistic is the same as the
Hotelling-Lawley Trace statistic produced by PROC GLM.

Separate tables are produced for Type I, II, and III tests, according to the ones you
select. For ODS purposes, the labels for these tables are “HLPS1,” “HLPS2,” and
“HLPS3,” respectively.

LDATA= SAS-data-set
reads the coefficient matrices associated with the TYPE=LIN(number) option. The
data set must contain the variables PARM, ROW, COL1–COLn, or PARM, ROW,
COL, VALUE. The PARM variable denotes which of thenumbercoefficient matrices
is currently being constructed, and the ROW, COL1–COLn, or ROW, COL, VALUE
variables specify the matrix values, as they do with the RANDOM statement option
GDATA=. Unspecified values of these matrices are set equal to 0.

LOCAL
LOCAL=EXP(<effects>)
LOCAL=POM( POM-data-set)

requests that a diagonal matrix be added toR. With just the LOCAL option, this
diagonal matrix equals�2I, and�2 becomes an additional variance parameter that
PROC MIXED profiles out of the likelihood provided that you do not specify the
NOPROFILE option in the PROC MIXED statement. The LOCAL option is useful
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if you want to add an observational error to a time series structure (Jones and Boadi-
Boateng 1991) or a nugget effect to a spatial structure (Cressie 1991).

The LOCAL=EXP(<effects>) option produces exponential local effects, also known
as dispersion effects, in a log-linear variance model. These local effects have the form

�2diag[exp(U�)]

whereU is the full-rank design matrix corresponding to the effects that you specify
and� are the parameters that PROC MIXED estimates. An intercept is not included
inU because it is accounted for by�2. PROC MIXED constructs the full-rankU in
terms of 1s and�1s for classification effects. Be sure to scale continuous effects in
U sensibly.

The LOCAL=POM(POM-data-set) option specifies the power-of-the-mean structure.
This structure possesses a variance of the form�2jx0i�

�j� for the ith observation,
wherexi is the ith row ofX (the design matrix of the fixed effects), and�� is an
estimate of the fixed-effects parameters that you specify inPOM-data-set.

The SAS data set specified byPOM-data-setcontains the numeric variable Estimate
(in previous releases, the variable name was required to be EST), and it has at least
as many observations as there are fixed-effects parameters. The firstp observations
of the Estimate variable inPOM-data-setare taken to be the elements of��, where
p is the number of columns ofX. You must order these observations according to
the nonfull-rank parameterization of the MIXED procedure. One easy way to set up
POM-data-setfor a �� corresponding to ordinary least squares is illustrated by the
following code:

ods output SolutionF=sf;
proc mixed;

class a;
model y = a x / s;

run;

proc mixed;
class a;
model y = a x;
repeated / local=pom(sf);

run;

Note that the generalized least-squares estimate of the fixed-effects parameters from
the second PROC MIXED step usually is not the same as your specified��. However,
you can iterate the POM fitting until the two estimates agree. Continuing from the
previous example, the code for performing one step of this iteration is as follows.
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ods output SolutionF=sf1;
proc mixed;

class a;
model y = a x / s;
repeated / local=pom(sf);

run;

proc compare brief data=sf compare=sf1;
var estimate;

run;

data sf;
set sf1;

run;

Unfortunately, this iterative process does not always converge. For further details,
refer to the description of pseudo-likelihood in Chapter 3 of Carroll and Ruppert
(1988).

LOCALW
specifies that only the local effects and no others be weighted. By default, all ef-
fects are weighted. The LOCALW option is used in connection with the WEIGHT
statement and the LOCAL option in the REPEATED statement

NONLOCALW
specifies that only the nonlocal effects and no others be weighted. By default, all
effects are weighted. The NONLOCALW option is used in connection with the
WEIGHT statement and the LOCAL option in the REPEATED statement

R<=value-list>
requests that blocks of the estimatedR matrix be displayed. The first block de-
termined by the SUBJECT= effect is the default displayed block. PROC MIXED
displays blanks for value-lists that are 0.

Thevalue-list indicates the subjects for which blocks ofR are to be displayed. For
example,

repeated / type=cs subject=person r=1,3,5;

displays block matrices for the first, third, and fifth persons. See the “PARMS
Statement” section on page 2122 for the possible forms ofvalue-list. The table name
for ODS purposes is “R”.

RC<=value-list>
produces the Cholesky root of blocks of the estimatedRmatrix. Thevalue-listspec-
ification is the same as with the R option. The table name for ODS purposes is
“CholR”.

RCI<=value-list>
produces the inverse Cholesky root of blocks of the estimatedR matrix. Thevalue-
list specification is the same as with the R option. The table name for ODS purposes
is “InvCholR”.

SAS OnlineDoc: Version 8



REPEATED Statement � 2137

RCORR<=value-list>
produces the correlation matrix corresponding to blocks of the estimatedR matrix.
Thevalue-listspecification is the same as with the R option. The table name for ODS
purposes is “RCorr”.

RI<=value-list>
produces the inverse of blocks of the estimatedRmatrix. Thevalue-listspecification
is the same as with the R option. The table name for ODS purposes is “InvR”.

SSCP
requests that an unstructuredR matrix be estimated from the sum-of-squares-and-
crossproducts matrix of the residuals. It applies only when you specify TYPE=UN
and have no RANDOM statements. Also, you must have a sufficient number of
subjects for the estimate to be positive definite.

This option is useful when the size of the blocks ofR are large (for example, greater
than 10) and you want to use or inspect an unstructured estimate that is much quicker
to compute than the default REML estimate. The two estimates will agree for certain
balanced data sets when you have a classification fixed effect defined across all time
points within a subject.

SUBJECT=effect
SUB=effect

identifies the subjects in your mixed model. Complete independence is assumed
across subjects; therefore, the SUBJECT= option produces a block-diagonal struc-
ture inR with identical blocks. When the SUBJECT= effect consists entirely of
classification variables, the blocks ofR correspond to observations sharing the same
level of that effect. These blocks are sorted according to this effect as well.

Continuous variables are permitted as arguments to the SUBJECT= option. PROC
MIXED does not sort by the values of the continuous variable; rather, it considers the
data to be from a new subject or group whenever the value of the continuous variable
changes from the previous observation. Using a continuous variable decreases exe-
cution time for models with a large number of subjects or groups and also prevents
the production of a large “Class Levels Information” table.

If you want to model nonzero covariance among all of the observations in your SAS
data set, specify SUBJECT=INTERCEPT to treat the data as if they are all from one
subject. Be aware though that, in this case, PROC MIXED manipulates anR matrix
with dimensions equal to the number of observations. If no SUBJECT= effect is
specified, then every observation is assumed to be from a different subject andR is
assumed to be diagonal. For this reason, you usually want to use the SUBJECT=
option in the REPEATED statement.

TYPE=covariance-structure
specifies the covariance structure of theR matrix. The SUBJECT= option defines
the blocks ofR, and the TYPE= option specifies the structure of these blocks. Valid
values forcovariance-structureand their descriptions are provided in Table 41.3 and
Table 41.4. The default structure is VC.
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Table 41.3. Covariance Structures

Structure Description Parms (i; j)th element
ANTE(1) Ante-Dependence 2t� 1 �i�j

Qj�1
k=i �k

AR(1) Autoregressive(1) 2 �2�ji�jj

ARH(1) Heterogeneous AR(1) t+ 1 �i�j�
ji�jj

ARMA(1,1) ARMA(1,1) 3 �2[
�ji�jj�11(i6= j) + 1(i=j)]
CS Compound Symmetry 2 �21 + �21(i = j)
CSH Heterogeneous CS t+ 1 �i�j[�1(i6= j) + 1(i=j)]

FA(q) Factor Analytic q
2(2t� q + 1) + t �

min(i;j;q)
k=1 �ik�jk + �2i 1(i = j)

FA0(q) No Diagonal FA q
2(2t� q + 1) �

min(i;j;q)
k=1 �ik�jk

FA1(q) Equal Diagonal FA q
2(2t� q + 1) + 1 �

min(i;j;q)
k=1 �ik�jk + �21(i = j)

HF Huynh-Feldt t+ 1 (�2i + �2j )=2 + �1(i6= j)
LIN(q) General Linear q �q

k=1�kAij

TOEP Toeplitz t �ji�jj+1
TOEP(q) Banded Toeplitz q �ji�jj+11(ji � jj < q)

TOEPH Heterogeneous TOEP 2t� 1 �i�j�ji�jj
TOEPH(q) Banded Hetero TOEP t+ q � 1 �i�j�ji�jj1(ji� jj < q)

UN Unstructured t(t+ 1)=2 �ij
UN(q) Banded q

2(2t� q + 1) �ij1(ji� jj < q)
UNR Unstructured Corrs t(t+ 1)=2 �i�j�max(i;j)min(i;j)

UNR(q) Banded Correlations q
2(2t� q + 1) �i�j�max(i;j)min(i;j)

UN@AR(1) Direct Product AR(1) t1(t1 + 1)=2 + 1 �i1j1�
ji2�j2j

UN@CS Direct Product CS t1(t1 + 1)=2 + 1 �i1j1(1� �21(i2 6= j2)); 0 � �2 � 1
UN@UN Direct Product UN t1(t1 + 1)=2 + �1;i1j1�2;i2j2

t2(t2 + 1)=2 � 1
VC Variance Components q �2k1(i = j) andi corresponds tokth effect

In Table 41.3, “Parms” is the number of covariance parameters in the structure,t is
the overall dimension of the covariance matrix, and1(A) equals 1 whenA is true
and 0 otherwise. For example, 1(i = j) equals 1 wheni = j and 0 otherwise,
and 1(ji � jj < q) equals 1 whenji � jj < q and 0 otherwise. For the TOEPH
structures,�0 = 1, and for the UNR structures,�ii = 1 for all i. For the direct
product structures, the subscripts “1” and “2” refer to the first and second structure in
the direct product, respectively, andi1 = int((i+t2�1)=t2), j1 = int((j+t2�1)=t2),
i2 = mod(i� 1; t2) + 1, andj2 = mod(j � 1; t2) + 1.

Table 41.4. Spatial Covariance Structures

Structure Description Parms (i; j)th element
SP(EXP)(c-list) Exponential 2 �2[exp(�dij=�)]
SP(EXPA)(c-list) Anisotropic Exponential 2c+ 1 �2

Qc
k=1 exp[��kd(i; j; k)

pk ]
SP(GAU)(c-list) Gaussian 2 �2[exp(�d2ij=�

2)]

SP(LIN)(c-list) Linear 2 �2(1� �dij) 1(�dij � 1)
SP(LINL)(c-list) Linear log 2 �2(1� � log(dij)) 1(� log(dij) � 1)
SP(POW)(c-list) Power 2 �2�dij

SP(POWA)(c-list) Anisotropic Power c+ 1 �2�
d(i;j;1)
1 �

d(i;j;2)
2 : : : �

d(i;j;c)
c

SP(SPH)(c-list) Spherical 2 �2[1� (
3dij
2� ) + (

d3ij
2�3

)] 1(dij � �)
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In Table 41.4,c-list contains the names of the numeric variables used as coordinates
of the location of the observation in space, anddij is the Euclidean distance be-
tween theith and jth vectors of these coordinates, which correspond to theith and
jth observations in the input data set. For SP(POWA) and SP(EXPA),c is the num-
ber of coordinates, andd(i; j; k) is the absolute distance between thekth coordinate,
k = 1; : : : ; c, of theith andjth observations in the input data set.

Table 41.5 lists some examples of the structures in Table 41.3 and Table 41.4.

Table 41.5. Covariance Structure Examples

Description Structure Example

Variance
Components

VC (default)

2664
�2B 0 0 0
0 �2B 0 0
0 0 �2AB 0
0 0 0 �2AB

3775
Compound
Symmetry

CS

2664
�2 + �1 �1 �1 �1
�1 �2 + �1 �1 �1
�1 �1 �2 + �1 �1
�1 �1 �1 �2 + �1

3775

Unstructured UN

2664
�21 �21 �31 �41
�21 �22 �32 �42
�31 �32 �23 �43
�41 �42 �43 �24

3775
Banded Main
Diagonal

UN(1)

2664
�21 0 0 0
0 �22 0 0
0 0 �23 0
0 0 0 �24

3775
First-Order
Autoregressive

AR(1) �2

2664
1 � �2 �3

� 1 � �2

�2 � 1 �
�3 �2 � 1

3775

Toeplitz TOEP

2664
�2 �1 �2 �3
�1 �2 �1 �2
�2 �1 �2 �1
�3 �2 �1 �2

3775
Toeplitz with
Two Bands

TOEP(2)

2664
�2 �1 0 0
�1 �2 �1 0
0 �1 �2 �1
0 0 �1 �2

3775
Spatial
Power

SP(POW)(c) �2

2664
1 �d12 �d13 �d14

�d21 1 �d23 �d24

�d31 �d32 1 �d34

�d41 �d42 �d43 1

3775
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Table 41.5. (continued)

Description Structure Example

Heterogeneous
AR(1)

ARH(1)

2664
�21 �1�2� �1�3�

2 �1�4�
3

�2�1� �22 �2�3� �2�4�
2

�3�1�
2 �3�2� �23 �3�4�

�4�1�
3 �4�2� �4�3� �24

3775
First-Order
Autoregressive
Moving-Average

ARMA(1,1) �2

2664
1 
 
� 
�2


 1 
 
�

� 
 1 


�2 
� 
 1

3775
Heterogeneous
CS

CSH

2664
�21 �1�2� �1�3� �1�4�

�2�1� �22 �2�3� �2�4�
�3�1� �3�2� �23 �3�4�
�4�1� �4�2� �4�3� �24

3775
First-Order
Factor
Analytic

FA(1)

2664
�21 + d1 �1�2 �1�3 �1�4
�2�1 �22 + d2 �2�3 �2�4
�3�1 �3�2 �23 + d3 �3�4
�4�1 �4�2 �4�3 �24 + d4

3775

Huynh-Feldt HF

264 �21
�2
1
+�2

2

2 � �
�2
1
+�2

3

2 � �
�2
2
+�2

1

2 � � �22
�2
2
+�2

3

2 � �
�2
3
+�2

1

2 � �
�2
3
+�2

2

2 � � �23

375
First-Order
Ante-dependence

ANTE(1)

24 �21 �1�2�1 �1�3�1�2
�2�1�1 �22 �2�3�2
�3�1�2�1 �3�2�2 �23

35

Heterogeneous
Toeplitz

TOEPH

2664
�21 �1�2�1 �1�3�2 �1�4�3

�2�1�1 �22 �2�3�1 �2�4�2
�3�1�2 �3�2�1 �23 �3�4�1
�4�1�3 �4�2�2 �4�3�1 �24

3775
Unstructured
Correlations

UNR

2664
�21 �1�2�21 �1�3�31 �1�4�41

�2�1�21 �22 �2�3�32 �2�4�42
�3�1�31 �3�2�32 �23 �3�4�43
�4�1�41 �4�2�42 �4�3�43 �24

3775
Direct Product
AR(1)

UN@AR(1)

�
�21 �21
�21 �22

�



24 1 � �2

� 1 �
�2 � 1

35 =

26666664

�21 �21� �21�
2 �21 �21� �21�

2

�21� �21 �21� �21� �21 �21�
�21�

2 �21� �21 �21�
2 �21� �21

�21 �21� �21�
2 �22 �22� �22�

2

�21� �21 �21� �22� �22 �22�
�21�

2 �21� �21 �22�
2 �22� �22

37777775

SAS OnlineDoc: Version 8



REPEATED Statement � 2141

The following provides some further information about these covariance struc-
tures:

TYPE=ANTE(1) specifies the first-order antedependence structure (refer to Ken-
ward 1987, Patel 1991, and Macchiavelli and Arnold 1994). In
Table 41.3,�2i is theith variance parameter, and�k is thekth auto-
correlation parameter satisfyingj�kj < 1.

TYPE=AR(1) specifies a first-order autoregressive structure. PROC MIXED im-
poses the constraintj�j < 1 for stationarity.

TYPE=ARH(1) specifies a heterogeneous first-order autoregressive structure. As
with TYPE=AR(1), PROC MIXED imposes the constraintj�j < 1
for stationarity.

TYPE=ARMA(1,1) specifies the first-order autoregressive moving average struc-
ture. In Table 41.3,� is the autoregressive parameter,
 models
a moving average component, and�2 is the residual variance. In
the notation of Fuller (1976, p. 68),� = �1 and


 =
(1 + b1�1)(�1 + b1)

1 + b21 + 2b1�1

The example in Table 41.5 andjb1j < 1 imply that

b1 =
� �

p
�2 � 4�2

2�

where� = 
�� and� = 1+�2�2
�. PROC MIXED imposes the
constraintsj�j < 1 andj
j < 1 for stationarity, although for some
values of� and 
 in this region the resulting covariance matrix
is not positive definite. When the estimated value of� becomes
negative, the computed covariance is multiplied bycos(�dij) to
account for the negativity.

TYPE=CS specifies the compound-symmetry structure, which has constant
variance and constant covariance.

TYPE=CSH specifies the heterogeneous compound-symmetry structure. This
structure has a different variance parameter for each diagonal ele-
ment, and it uses the square roots of these parameters in the off-
diagonal entries. In Table 41.3,�2i is the ith variance parameter,
and� is the correlation parameter satisfyingj�j < 1.

TYPE=FA(q) specifies the factor-analytic structure withq factors (Jennrich and
Schluchter 1986). This structure is of the form��0 + D, where
� is a t � q rectangular matrix andD is a t � t diagonal matrix
with t different parameters. Whenq > 1, the elements of� in its
upper right-hand corner (that is, the elements in theith row andjth
column forj > i) are set to zero to fix the rotation of the structure.
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TYPE=FA0(q) is similar to the FA(q) structure except that no diagonal matrixD
is included. Whenq < t, that is, when the number of factors is
less than the dimension of the matrix, this structure is nonnegative
definite but not of full rank. In this situation, you can use it for
approximating an unstructuredG matrix in the RANDOM state-
ment or for combining with the LOCAL option in the REPEATED
statement. Whenq = t, you can use this structure to constrainG
to be nonnegative definite in the RANDOM statement.

TYPE=FA1(q) is similar to the FA(q) structure except that all of the elements in
D are constrained to be equal. This offers a useful and more parsi-
monious alternative to the full factor-analytic structure.

TYPE=HF specifies the Huynh-Feldt covariance structure (Huynh and Feldt
1970). This structure is similar to the CSH structure in that it has
the same number of parameters and heterogeneity along the main
diagonal. However, it constructs the off-diagonal elements by tak-
ing arithmetic rather than geometric means.

You can perform a likelihood ratio test of the Huynh-Feldt condi-
tions by running PROC MIXED twice, once with TYPE=HF and
once with TYPE=UN, and then subtracting their respective values
of �2 times the maximized likelihood.

If PROC MIXED does not converge under your Huynh-Feldt
model, you can specify your own starting values with the PARMS
statement. The default MIVQUE(0) starting values can sometimes
be poor for this structure. A good choice for starting values is
often the parameter estimates corresponding to an initial fit using
TYPE=CS.

TYPE=LIN(q) specifies the general linear covariance structure withq parameters
(Helms and Edwards 1991). This structure consists of a linear com-
bination of known matrices that are input with the LDATA= option.
This structure is very general, and you need to make sure that the
variance matrix is positive definite. By default, PROC MIXED sets
the initial values of the parameters to 1. You can use the PARMS
statement to specify other initial values.

TYPE=SIMPLE is an alias for TYPE=VC.

TYPE=SP(EXPA)(c-list) specifies the spatial anisotropic exponential structure,
wherec-list is a list of variables indicating the coordinates. This
structure has(i; j)th element equal to

�2
cY

k=1

exp[��kd(i; j; k)
pk ]

wherec is the number of coordinates andd(i; j; k) is the absolute
distance between thekth coordinate (k = 1; : : : ; c) of the ith and
jth observations in the input data set. There are2c + 1 parameters
to be estimated:�k, pk (k = 1; : : : ; c), and�2.
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You may want to constrain some of the EXPA parameters to known
values. For example, suppose you have three coordinate variables
C1, C2, and C3 and you want to constrain the powerspk to equal 2,
as in Sacks et al. (1989). Suppose further that you want to model
covariance across the entire input data set and you suspect the�k
and�2 estimates are close to 3, 4, 5, and 1, respectively. Then
specify

repeated / type=sp(expa)(c1 c2 c3)
subject=intercept;

parms (3) (4) (5) (2) (2) (2) (1) /
hold=4,5,6;

TYPE=SP(POW)(c-list)

TYPE=SP(POWA)(c-list) specifies the spatial power structures. When the estimated
value of� becomes negative, the computed covariance is multiplied
by cos(�dij) to account for the negativity.

TYPE=TOEP<(q)> specifies a banded Toeplitz structure. This can be viewed
as a moving-average structure with order equal toq � 1. The
TYPE=TOEP option is a full Toeplitz matrix, which can be viewed
as an autoregressive structure with order equal to the dimension of
the matrix. The specification TYPE=TOEP(1) is the same as�2I,
whereI is an identity matrix, and it can be useful for specifying
the same variance component for several effects.

TYPE=TOEPH<(q)> specifies a heterogeneous banded Toeplitz structure. In
Table 41.3,�2i is theith variance parameter and�j is thejth cor-
relation parameter satisfyingj�j j < 1. If you specify the order
parameterq, then PROC MIXED estimates only the firstq bands
of the matrix, setting all higher bands equal to 0. The option
TOEPH(1) is equivalent to both the UN(1) and UNR(1) options.

TYPE=UN<(q)> specifies a completely general (unstructured) covariance matrix
parameterized directly in terms of variances and covariances. The
variances are constrained to be nonnegative, and the covariances
are unconstrained. This structure is not constrained to be nonneg-
ative definite in order to avoid nonlinear constraints; however, you
can use the FA0 structure if you want this constraint to be imposed
by a Cholesky factorization. If you specify the order parameterq,
then PROC MIXED estimates only the firstq bands of the matrix,
setting all higher bands equal to 0.

TYPE=UNR<(q)> specifies a completely general (unstructured) covariance matrix
parameterized in terms of variances and correlations. This struc-
ture fits the same model as the TYPE=UN(q) option but with a
different parameterization. Theith variance parameter is�2i . The
parameter�jk is the correlation between thejth andkth measure-
ments; it satisfiesj�jkj < 1. If you specify the order parameterr,
then PROC MIXED estimates only the firstq bands of the matrix,
setting all higher bands equal to zero.
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TYPE=UN@AR(1)

TYPE=UN@CS

TYPE=UN@UN specify direct (Kronecker) product structures designed for multi-
variate repeated measures (refer to Galecki 1994). These structures
are constructed by taking the Kronecker product of an unstructured
matrix (modeling covariance across the multivariate observations)
with an additional covariance matrix (modeling covariance across
time or another factor). The upper left value in the second matrix
is constrained to equal 1 to identify the model. Refer toSAS/IML
User’s Guide, First Edition,for more details on direct products.

To use these structures in the REPEATED statement, you must
specify two distinct REPEATED effects, both of which must be
included in the CLASS statement. The first effect indicates the
multivariate observations, and the second identifies the levels of
time or some additional factor. Note that the input data set must
still be constructed in “univariate” format; that is, all dependent
observations are still listed observation-wise in one single variable.
Although this construction provides for general modeling possibil-
ities, it forces you to construct variables indicating both dimensions
of the Kronecker product.

For example, suppose your observed data consist of heights and
weights of several children measured over several successive years.
Your input data set should then contain variables similar to the fol-
lowing:

� Y, all of the heights and weights, with a separate observation
for each

� Var, indicating whether the measurement is a height or a
weight

� Year, indicating the year of measurement

� Child, indicating the child on which the measurement was
taken

Your PROC MIXED code for a Kronecker AR(1) structure across
years would then be

proc mixed;
class Var Year Child;
model Y = Var Year Var*Year;
repeated Var Year / type=un@ar(1)

subject=Child;
run;

You should nearly always want to model different means for
the multivariate observations, hence the inclusion ofVar in the
MODEL statement. The preceding mean model consists of cell
means for all combinations ofVAR andYEAR.
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TYPE=VC specifies standard variance components and is the default structure
for both the RANDOM and REPEATED statements. In the RAN-
DOM statement, a distinct variance component is assigned to each
effect. In the REPEATED statement, this structure is usually used
only with the GROUP= option to specify a heterogeneous variance
model.

Jennrich and Schluchter (1986) provide general information about the use of covari-
ance structures, and Wolfinger (1996) presents details about many of the heteroge-
neous structures. Marx and Thompson (1987), Cressie (1991), and Zimmerman and
Harville (1991) discuss spatial structures.

WEIGHT Statement

WEIGHTvariable ;

If you do not specify a REPEATED statement, the WEIGHT statement operates ex-
actly like the one in PROC GLM. In this case PROC MIXED replacesX0X andZ0Z

with X0WX andZ0WZ, whereW is the diagonal weight matrix. If you specify a
REPEATED statement, then the WEIGHT statement replacesR with LRL, whereL
is a diagonal matrix with elementsW�1=2. Observations with nonpositive or missing
weights are not included in the PROC MIXED analysis.

Details

Mixed Models Theory

This section provides an overview of a likelihood-based approach to general linear
mixed models. This approach simplifies and unifies many common statistical anal-
yses, including those involving repeated measures, random effects, and random co-
efficients. The basic assumption is that the data are linearly related to unobserved
multivariate normal random variables. Extensions to nonlinear and nonnormal situ-
ations are possible but are not discussed here. Additional theory with examples is
provided in Littell et al. (1996) and Verbeke and Molenberghs (1997).

Matrix Notation
Suppose that you observen data pointsy1; : : : ; yn and that you want to explain
them usingn values for each ofp explanatory variablesx11; : : : ; x1p, x21; : : : ; x2p,
: : : ; xn1; : : : ; xnp. Thexij values may be either regression-type continuous variables
or dummy variables indicating class membership. The standard linear model for this
setup is

yi =

pX
j=1

xij�j + �i i = 1; : : : ; n

where�1; : : : ; �p are unknownfixed-effectsparameters to be estimated and�1; : : : ; �n
are unknown independent and identically distributed normal (Gaussian) random vari-
ables with mean 0 and variance�2.
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The preceding equations can be written simultaneously using vectors and a matrix,
as follows:26664

y1
y2
...
yn

37775 =

26664
x11 x12 : : : x1p
x21 x22 : : : x2p

...
...

...
xn1 xn2 : : : xnp

37775
26664
�1
�2
...
�p

37775+

26664
�1
�2
...
�n

37775
For convenience, simplicity, and extendibility, this entire system is written as

y = X� + �

wherey denotes the vector of observedyi’s,X is the known matrix ofxij ’s, � is the
unknown fixed-effects parameter vector, and� is the unobserved vector of indepen-
dent and identically distributed Gaussian random errors.

In addition to denoting data, random variables, and explanatory variables in the pre-
ceding fashion, the subsequent development makes use of basic matrix operators such
as transpose (0), inverse (�1), generalized inverse (�), determinant (j � j), and matrix
multiplication. Refer to Searle (1982) for details on these and other matrix tech-
niques.

Formulation of the Mixed Model
The previous general linear model is certainly a useful one (Searle 1971), and it is the
one fitted by the GLM procedure. However, many times the distributional assumption
about � is too restrictive. The mixed model extends the general linear model by
allowing a more flexible specification of the covariance matrix of�. In other words,
it allows for both correlation and heterogeneous variances, although you still assume
normality.

The mixed model is written as

y = X� + Z
 + �

where everything is the same as in the general linear model except for the addition
of the known design matrix,Z, and the vector of unknownrandom-effects parame-
ters, 
. The matrixZ can contain either continuous or dummy variables, just like
X. The namemixed modelcomes from the fact that the model contains both fixed-
effects parameters,�, and random-effects parameters,
. Refer to Henderson (1990)
and Searle, Casella, and McCulloch (1992) for historical developments of the mixed
model.

A key assumption in the foregoing analysis is that
 and� are normally distributed
with

E

�



�

�
=

�
0

0

�
Var

�



�

�
=

�
G 0

0 R

�
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The variance ofy is, therefore,V = ZGZ0 +R. You can modelV by setting up the
random-effects design matrixZ and by specifying covariance structures forG and
R.

Note that this is a general specification of the mixed model, in contrast to many
texts and articles that discuss only simple random effects. Simple random effects are
a special case of the general specification withZ containing dummy variables,G
containing variance components in a diagonal structure, andR = �2In, whereIn
denotes then� n identity matrix. The general linear model is a further special case
with Z = 0 andR = �2In.

The following two examples illustrate the most common formulations of the general
linear mixed model.

Example: Growth Curve with Compound Symmetry
Suppose that you have three growth curve measurements fors individuals and that
you want to fit an overall linear trend in time. YourX matrix is as follows:

X =

26666666664

1 1
1 2
1 3
...

...
1 1
1 2
1 3

37777777775
The first column (coded entirely with1s) fits an intercept, and the second column
(coded with times of1; 2; 3) fits a slope. Here,n = 3s andp = 2.

Suppose further that you want to introduce a common correlation among the obser-
vations from a single individual, with correlation being the same for all individuals.
One way of setting this up in the general mixed model is to eliminate theZ and
G matrices and let theR matrix be block diagonal with blocks corresponding to
the individuals and with each block having thecompound-symmetrystructure. This
structure has two unknown parameters, one modeling a common covariance and the
other a residual variance. The form forR would then be as follows:

R =

26666666664

�21 + �2 �21 �21
�21 �21 + �2 �21
�21 �21 �21 + �2

. . .
�21 + �2 �21 �21

�21 �21 + �2 �21
�21 �21 �21 + �2

37777777775
where blanks denote zeroes. There are3s rows and columns altogether, and the
common correlation is�21=(�

2
1 + �2).
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The PROC MIXED code to fit this model is as follows:

proc mixed;
class indiv;
model y = time;
repeated / type=cs subject=indiv;

run;

Here,indiv is a classification variable indexing individuals. The MODEL statement
fits a straight line fortime; the intercept is fit by default just as in PROC GLM.
The REPEATED statement models theRmatrix: TYPE=CS specifies the compound
symmetry structure, and SUBJECT=INDIV specifies the blocks ofR.

An alternative way of specifying the common intra-individual correlation is to let

Z =

26666666666666664

1
1
1

1
1
1

. . .
1
1
1

37777777777777775

G =

26664
�21

�21
. ..

�21

37775
andR = �2In. TheZmatrix has3s rows ands columns, andG is s� s.

You can set up this model in PROC MIXED in two different but equivalent ways:

proc mixed;
class indiv;
model y = time;
random indiv;

run;

proc mixed;
class indiv;
model y = time;
random intercept / subject=indiv;

run;

Both of these specifications fit the same model as the previous one that used the
REPEATED statement; however, the RANDOM specifications constrain the correla-
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tion to be positive whereas the REPEATED specification leaves the correlation un-
constrained.

Example: Split-Plot Design
The split-plot design involves two experimental treatment factors,A andB, and two
different sizes of experimental units to which they are applied (refer to Winer 1971,
Snedecor and Cochran 1980, and Milliken and Johnson 1992). The levels ofA are
randomly assigned to the larger sized experimental unit, calledwhole plots, whereas
the levels ofB are assigned to the smaller sized experimental unit, thesubplots. The
subplots are assumed to be nested within the whole plots, so that a whole plot consists
of a cluster of subplots and a level ofA is applied to the entire cluster.

Such an arrangement is often necessary by nature of the experiment, the classical
example being the application of fertilizer to large plots of land and different crop
varieties planted in subdivisions of the large plots. For this example, fertilizer is the
whole plot factorA and variety is the subplot factorB.

The first example is a split-plot design for which the whole plots are arranged in a
randomized block design. The appropriate PROC MIXED code is as follows:

proc mixed;
class a b block;
model y = a|b;
random block a*block;

run;

Here

R = �2I24

andX, Z, andG have the following form:

X =

26666666666666666666664

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
...

...
...

...
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

37777777777777777777775
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Z =

266666666666666666666666666666666666666666664

1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1

377777777777777777777777777777777777777777775

G =

2666666666664

�2B
�2B

�2B
�2B

�2AB
�2AB

. . .
�2AB

3777777777775
where�2B is the variance component forBlock and�2AB is the variance component
for A*Block. Changing the RANDOM statement to

random int a / subject=block;

fits the same model, but withZ andG sorted differently.
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Z =

266666666666666666666666666666666666666666664

1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1

1 1
1 1
1 1
1 1
1 1
1 1

377777777777777777777777777777777777777777775

G =

266666666666664

�2B
�2AB

�2AB
�2AB

. . .
�2B

�2AB
�2AB

�2AB

377777777777775

Estimating G and R in the Mixed Model
Estimation is more difficult in the mixed model than in the general linear model. Not
only do you have� as in the general linear model, but you have unknown parameters
in 
,G, andR as well. Least squares is no longer the best method.Generalized least
squares(GLS) is more appropriate, minimizing

(y �X�)0V�1(y �X�)

However, it requires knowledge ofV and, therefore, knowledge ofG andR. Lacking
such information, one approach is to useestimatedGLS, in which you insert some
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reasonable estimate forV into the minimization problem. The goal thus becomes
finding a reasonable estimate ofG andR.

In many situations, the best approach is to uselikelihood-basedmethods, exploiting
the assumption that
 and� are normally distributed (Hartley and Rao 1967; Patterson
and Thompson 1971; Harville 1977; Laird and Ware 1982; Jennrich and Schluchter
1986). PROC MIXED implements two likelihood-based methods:maximum likeli-
hood (ML) and restricted/residual maximum likelihood(REML). A favorable theo-
retical property of ML and REML is that they accommodate data that are missing at
random (Rubin 1976; Little 1995).

PROC MIXED constructs an objective function associated with ML or REML and
maximizes it over all unknown parameters. Using calculus, it is possible to reduce
this maximization problem to one over only the parameters inG andR. The corre-
sponding log-likelihood functions are as follows:

ML: l(G;R) = �
1

2
log jVj �

1

2
r0V�1r�

n

2
log(2�)

REML: lR(G;R) = �
1

2
log jVj �

1

2
log jX0V�1Xj

�
1

2
r0V�1r�

n� p

2
log(2�)g

wherer = y�X(X0V�1X)�X0V�1y andp is the rank ofX. PROC MIXED actu-
ally minimizes�2 times these functions using a ridge-stabilized Newton-Raphson
algorithm. Lindstrom and Bates (1988) provide reasons for preferring Newton-
Raphson to the Expectation-Maximum (EM) algorithm described in Dempster, Laird,
and Rubin (1977) and Laird, Lange, and Stram (1987), as well as analytical details
for implementing a QR-decomposition approach to the problem. Wolfinger, Tobias,
and Sall (1994) present the sweep-based algorithms that are implemented in PROC
MIXED.

One advantage of using the Newton-Raphson algorithm is that the second derivative
matrix of the objective function evaluated at the optima is available upon comple-
tion. Denoting this matrixH, the asymptotic theory of maximum likelihood (refer
to Serfling 1980) shows that2H�1 is an asymptotic variance-covariance matrix of
the estimated parameters ofG andR. Thus, tests and confidence intervals based
on asymptotic normality can be obtained. However, these can be unreliable in small
samples, especially for parameters such as variance components which have sampling
distributions that tend to be skewed to the right.

If a residual variance�2 is a part of your mixed model, it can usually beprofiledout
of the likelihood. This means solving analytically for the optimal�2 and plugging
this expression back into the likelihood formula (refer to Wolfinger, Tobias, and Sall
1994). This reduces the number of optimization parameters by one and can improve
convergence properties. PROC MIXED profiles the residual variance out of the log
likelihood whenever it appears reasonable to do so. This includes the case whenR

equals�2I and when it has blocks with a compound symmetry, time series, or spatial
structure. PROC MIXED does not profile the log likelihood whenR has unstructured
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blocks, when you use the HOLD= or NOITER option in the PARMS statement, or
when you use the NOPROFILE option in the PROC MIXED statement.

Instead of ML or REML, you can use the noniterative MIVQUE0 method to estimate
G andR (Rao 1972; LaMotte 1973; Wolfinger, Tobias, and Sall 1994). In fact,
by default PROC MIXED uses MIVQUE0 estimates as starting values for the ML
and REML procedures. For variance component models, another estimation method
involves equating Type I, II, or III expected mean squares to their observed values
and solving the resulting system. However, Swallow and Monahan (1984) present
simulation evidence favoring REML and ML over MIVQUE0 and other method-of-
moment estimators.

Estimating � and 
 in the Mixed Model
ML, REML, MIVQUE0, or Type1–Type3 provide estimates ofG andR, which are
denotedbG and bR, respectively. To obtain estimates of� and
, the standard method
is to solve themixed model equations(Henderson 1984):"

X0 bR�1X X0 bR�1Z

Z0 bR�1X Z0 bR�1Z+ bG�1

#� b�b

�
=

"
X0 bR�1y

Z0 bR�1y

#

The solutions can also be written as

b� = (X0 bV�1X)�X0 bV�1yb
 = bGZ0 bV�1(y �Xb�)
and have connections with empirical Bayes estimators (Laird and Ware 1982).

Note that the mixed model equations are extended normal equations and that the
preceding expression assumes thatbG is nonsingular. For the extreme case when the
eigenvalues ofbG are very large,bG�1 contributes very little to the equations andb

is close to what it would be if
 actually contained fixed-effects parameters. On the
other hand, when the eigenvalues ofbG are very small,bG�1 dominates the equations
and b
 is close to0. For intermediate cases,bG�1 can be viewed as shrinking the
fixed-effects estimates of
 towards0 (Robinson 1991).

If bG is singular, then the mixed model equations are modified (Henderson 1984) as
follows:

"
X0 bR�1

X X0 bR�1
ZbLbL0Z0 bR�1

X bL0Z0 bR�1
ZbL+ I

#� b�b�
�
=

"
X0 bR�1

ybL0Z0 bR�1
y

#

wherebL is the lower-triangular Cholesky root ofbG, satisfying bG = bLbL0. Both b�
and a generalized inverse of the left-hand-side coefficient matrix are then transformed
usingbL to determineb
.
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An example of when the singular form of the equations is necessary is when a vari-
ance component estimate falls on the boundary constraint of0.

Model Selection
The previous section on estimation assumes the specification of a mixed model in
terms ofX, Z,G, andR. Even thoughX andZ have known elements, their specific
form and construction is flexible, and several possibilities may present themselves for
a particular data set. Likewise, several different covariance structures forG andR
might be reasonable.

Space does not permit a thorough discussion of model selection, but a few brief com-
ments and references are in order. First, subject matter considerations and objectives
are of great importance when selecting a model; refer to Diggle (1988) and Lindsey
(1993).

Second, when the data themselves are looked to for guidance, many of the graphical
methods and diagnostics appropriate for the general linear model extend to the mixed
model setting as well (Christensen, Pearson, and Johnson 1992).

Finally, a likelihood-based approach to the mixed model provides several statistical
measures for model adequacy as well. The most common of these are the likelihood
ratio test and Akaike’s and Schwarz’s criteria (Bozdogan 1987; Wolfinger 1993).

Statistical Properties
If G andR are known,b� is thebest linear unbiased estimator(BLUE) of �, andb

is thebest linear unbiased predictor(BLUP) of
 (Searle 1971; Harville 1988, 1990;
Robinson 1991; McLean, Sanders, and Stroup 1991). Here, “best” means minimum
mean squared error. The covariance matrix of(b� � �; b
 � 
) is

C =

�
X0R�1X X0R�1Z

Z0R�1X Z0R�1Z+G�1

��
where� denotes a generalized inverse (refer to Searle 1971).

However,G andR are usually unknown and are estimated using one of the afore-
mentioned methods. These estimates,bG and bR, are therefore simply substituted into
the preceding expression to obtain

bC =

"
X0 bR�1X X0 bR�1Z

Z0 bR�1X Z0 bR�1Z+ bG�1

#�

as the approximate variance-covariance matrix of(b� � �; b
 � 
). In this case, the
BLUE and BLUP acronyms no longer apply, but the wordempirical is often added
to indicate such an approximation. The appropriate acronyms thus become EBLUE
and EBLUP.

McLean and Sanders (1988) show thatbC can also be written as

bC =

" bC11
bC0
21bC21
bC22

#
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where

bC11 = (X0 bV�1X)�bC21 = � bGZ0 bV�1XbC11bC22 = (Z0 bR�1Z+ bG�1)�1 � bC21X
0 bV�1Z bG

Note that bC11 is the familiar estimated generalized least-squares formula for the
variance-covariance matrix ofb�.

As a cautionary note,bC tends to underestimate the true sampling variability of
(b� b
) because no account is made for the uncertainty in estimatingG andR. Al-
though inflation factors have been proposed (Kackar and Harville 1984; Kass and
Steffey 1989; Prasad and Rao 1990), they tend to be small for data sets that are fairly
well balanced. PROC MIXED does not compute any inflation factors by default,
but rather accounts for the downward bias by using the approximatet andF statis-
tics described subsequently. The DDFM=KENWARDROGER option in the MODEL
statement prompts PROC MIXED to compute a specific inflation factor along with
Satterthwaite-based degrees of freedom.

Inference and Test Statistics
For inferences concerning the covariance parameters in your model, you can use
likelihood-based statistics. One common likelihood-based statistic is theWald Z,
which is computed as the parameter estimate divided by its asymptotic standard er-
ror. The asymptotic standard errors are computed from the inverse of the second
derivative matrix of the likelihood with respect to each of the covariance parameters.
The WaldZ is valid for large samples, but it can be unreliable for small data sets and
for parameters such as variance components, which are known to have a skewed or
bounded sampling distribution.

A better alternative is the likelihood ratio�2. This statistic compares two covariance
models, one a special case of the other. To compute it, you must run PROC MIXED
twice, once for each of the two models, and then subtract the corresponding values
of �2 times the log likelihoods. You can use either ML or REML to construct this
statistic, which tests whether the full model is necessary beyond the reduced model.

As long as the reduced model does not occur on the boundary of the covariance
parameter space, the�2 statistic computed in this fashion has a large-sample sampling
distribution that is�2 with degrees of freedom equal to the difference in the number of
covariance parameters between the two models. If the reduced model does occur on
the boundary of the covariance parameter space, the asymptotic distribution becomes
a mixture of�2 distributions (Self and Liang 1987). A common example of this is
when you are testing that a variance component equals its lower boundary constraint
of 0.

A final possibility for obtaining inferences concerning the covariance parameters is to
simulate or resample data from your model and construct empirical sampling distri-
butions of the parameters. The SAS macro language and the ODS system are useful
tools in this regard.
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For inferences concerning the fixed- and random-effects parameters in the mixed
model, consider estimable linear combinations of the following form:

L

�
�




�

The estimability requirement (Searle 1971) applies only to the�-portion ofL, as any
linear combination of
 is estimable. Such a formulation in terms of a generalL

matrix encompasses a wide variety of common inferential procedures such as those
employed with Type I–Type III tests and LS-means. The CONTRAST and ESTI-
MATE statements in PROC MIXED enable you to specify your ownL matrices.
Typically, inference on fixed-effects is the focus, and, in this case, the
-portion ofL
is assumed to contain all 0s.

Statistical inferences are obtained by testing the hypothesis

H : L

�
�




�
= 0

or by constructing point and interval estimates.

WhenL consists of a single row, a generalt-statistic can be constructed as follows
(refer to McLean and Sanders 1988, Stroup 1989a):

t =

L

� b�b

�

p
LbCL0

Under the assumed normality of
 and�, t has an exactt-distribution only for data
exhibiting certain types of balance and for some special unbalanced cases. In general,
t is only approximatelyt-distributed, and its degrees of freedom must be estimated.
See the DDFM= option on page 2117 for a description of the various degrees-of-
freedom methods available in PROC MIXED.

With b� being the approximate degrees of freedom, the associated confidence interval
is

L

� b�b

�
� t

b�;�=2

p
LbCL0

wheret
b�;�=2 is the(1� �=2)100th percentile of thet

b�-distribution.

When the rank ofL is greater than 1, PROC MIXED constructs the following general
F -statistic:

F =

� b�b

�0
L0(LbCL0)�1L

� b�b

�

rank(L)
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Analogous tot, F in general has an approximateF -distribution withrank(L) nu-
merator degrees of freedom andb� denominator degrees of freedom.

Thet- andF -statistics enable you to make inferences about your fixed effects, which
account for the variance-covariance model you select. An alternative is the�2 statis-
tic associated with the likelihood ratio test. This statistic compares two fixed-effects
models, one a special case of the other. It is computed just as when comparing dif-
ferent covariance models, although you should use ML and not REML here because
the penalty term associated with restricted likelihoods depends upon the fixed-effects
specification.

Parameterization of Mixed Models

Recall that a mixed model is of the form

y = X� + Z
 + �

wherey represents univariate data,� is an unknown vector of fixed effects with
known model matrixX, 
 is an unknown vector of random effects with known model
matrixZ, and� is an unknown random error vector.

PROC MIXED constructs a mixed model according to the specifications in the
MODEL, RANDOM, and REPEATED statements. Each effect in the MODEL state-
ment generates one or more columns in the model matrixX, and each effect in the
RANDOM statement generates one or more columns in the model matrixZ. Effects
in the REPEATED statement do not generate model matrices; they serve only to in-
dex observations within subjects. This section shows precisely how PROC MIXED
buildsX andZ.

Intercept
By default, all models automatically include a column of 1s inX to estimate a fixed-
effect intercept parameter�. You can use the NOINT option in the MODEL statement
to suppress this intercept. The NOINT option is useful when you are specifying a
classification effect in the MODEL statement and you want the parameter estimate to
be in terms of the mean response for each level of that effect, rather than in terms of
a deviation from an overall mean.

By contrast, the intercept is not included by default inZ. To obtain a column of 1s
in Z, you must specify in the RANDOM statement either the INTERCEPT effect or
some effect that has only one level.

Regression Effects
Numeric variables, or polynomial terms involving them, may be included in the
model as regression effects (covariates). The actual values of such terms are in-
cluded as columns of the model matricesX andZ. You can use the bar operator with
a regression effect to generate polynomial effects. For instance, XjXjX expands to
X X*X X*X*X, a cubic model.
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Main Effects
If a class variable hasm levels, PROC MIXED generatesm columns in the model
matrix for its main effect. Each column is an indicator variable for a given level.
The order of the columns is the sort order of the values of their levels and can be
controlled with the ORDER= option in the PROC MIXED statement. The following
table is an example.

Data I A B
A B � A1 A2 B1 B2 B3
1 1 1 1 0 1 0 0
1 2 1 1 0 0 1 0
1 3 1 1 0 0 0 1
2 1 1 0 1 1 0 0
2 2 1 0 1 0 1 0
2 3 1 0 1 0 0 1

Typically, there are more columns for these effects than there are degrees of freedom
for them. In other words, PROC MIXED uses an over-parameterized model.

Interaction Effects
Often a model includes interaction (crossed) effects. With an interaction, PROC
MIXED first reorders the terms to correspond to the order of the variables in the
CLASS statement. Thus,B*A becomesA*B if A precedesB in the CLASS state-
ment. Then, PROC MIXED generates columns for all combinations of levels that
occur in the data. The order of the columns is such that the rightmost variables in the
cross index faster than the leftmost variables. Empty columns (that would contain all
0s) are not generated forX, but they are forZ.

Data I A B A*B
A B � A1 A2 B1 B2 B3 A1B1 A1B2 A1B3 A2B1 A2B2 A2B3
1 1 1 1 0 1 0 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 1 0 0 0
2 1 1 0 1 1 0 0 0 0 0 1 0 0
2 2 1 0 1 0 1 0 0 0 0 0 1 0
2 3 1 0 1 0 0 1 0 0 0 0 0 1

In the preceding matrix, main-effects columns are not linearly independent of
crossed-effect columns; in fact, the column space for the crossed effects contains
the space of the main effect.

When your model contains many interaction effects, you may be able to code them
more parsimoniously using the bar operator (j ). The bar operator generates all
possible interaction effects. For example,AjBjC expands toA B A*B C A*C B*C
A*B*C. To eliminate higher-order interaction effects, use the at sign ( @ ) in con-
junction with the bar operator. For instance,AjBjCjD@2 expands toA B A*B C
A*C B*C D A*D B*D C*D.
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Nested Effects
Nested effects are generated in the same manner as crossed effects. Hence, the design
columns generated by the following two statements are the same (but the ordering of
the columns is different):

model Y=A B(A);

model Y=A A*B;

The nesting operator in PROC MIXED is more a notational convenience than an
operation distinct from crossing. Nested effects are typically characterized by the
property that the nested variables never appear as main effects. The order of the vari-
ables within nesting parentheses is made to correspond to the order of these variables
in the CLASS statement. The order of the columns is such that variables outside the
parentheses index faster than those inside the parentheses, and the rightmost nested
variables index faster than the leftmost variables.

Data I A B(A)
A B � A1 A2 B1A1 B2A1 B3A1 B1A2 B2A2 B3A2
1 1 1 1 0 1 0 0 0 0 0
1 2 1 1 0 0 1 0 0 0 0
1 3 1 1 0 0 0 1 0 0 0
2 1 1 0 1 0 0 0 1 0 0
2 2 1 0 1 0 0 0 0 1 0
2 3 1 0 1 0 0 0 0 0 1

Note that nested effects are often distinguished from interaction effects by the implied
randomization structure of the design. That is, they usually indicate random effects
within a fixed-effects framework. The fact that random effects can be modeled di-
rectly in the RANDOM statement may make the specification of nested effects in the
MODEL statement unnecessary.

Continuous-Nesting-Class Effects
When a continuous variable nests with a class variable, the design columns are con-
structed by multiplying the continuous values into the design columns for the class
effect.

Data I A X(A)
X A � A1 A2 X(A1) X(A2)
21 1 1 1 0 21 0
24 1 1 1 0 24 0
22 1 1 1 0 22 0
28 2 1 0 1 0 28
19 2 1 0 1 0 19
23 2 1 0 1 0 23

This model estimates a separate slope forX within each level ofA.
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Continuous-by-Class Effects
Continuous-by-class effects generate the same design columns as continuous-nesting-
class effects. The two models are made different by the presence of the continuous
variable as a regressor by itself, as well as a contributor to a compound effect.

Data I X A X*A
X A � X A1 A2 X*A1 X*A2
21 1 1 21 1 0 21 0
24 1 1 24 1 0 24 0
22 1 1 22 1 0 22 0
28 2 1 28 0 1 0 28
19 2 1 19 0 1 0 19
23 2 1 23 0 1 0 23

You can use continuous-by-class effects to test for homogeneity of slopes.

General Effects
An example that combines all the effects isX1*X2*A*B*C(D E). The continuous list
comes first, followed by the crossed list, followed by the nested list in parentheses.
You should be aware of the sequencing of parameters when you use the CONTRAST
or ESTIMATE statements to compute some function of the parameter estimates.

Effects may be renamed by PROC MIXED to correspond to ordering rules. For
example,B*A(E D) may be renamedA*B(D E) to satisfy the following:

� Class variables that occur outside parentheses (crossed effects) are sorted in the
order in which they appear in the CLASS statement.

� Variables within parentheses (nested effects) are sorted in the order in which
they appear in the CLASS statement.

The sequencing of the parameters generated by an effect can be described by which
variables have their levels indexed faster:

� Variables in the crossed list index faster than variables in the nested list.

� Within a crossed or nested list, variables to the right index faster than variables
to the left.

For example, suppose a model includes four effects—A, B, C, andD—each having
two levels, 1 and 2. If the CLASS statement is

class A B C D;

then the order of the parameters for the effect B*A(C D), which is renamed
A*B(C D), is

A1B1C1D1 ! A1B2C1D1 ! A2B1C1D1 ! A2B2C1D1 !
A1B1C1D2 ! A1B2C1D2 ! A2B1C1D2 ! A2B2C1D2 !
A1B1C2D1 ! A1B2C2D1 ! A2B1C2D1 ! A2B2C2D1 !
A1B1C2D2 ! A1B2C2D2 ! A2B1C2D2 ! A2B2C2D2
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Note that first the crossed effectsB andA are sorted in the order in which they appear
in the CLASS statement so thatA precedesB in the parameter list. Then, for each
combination of the nested effects in turn, combinations ofA andB appear. TheB
effect moves fastest because it is rightmost in the cross list. ThenA moves next
fastest, andD moves next fastest. TheC effect is the slowest since it is leftmost in
the nested list.

When numeric levels are used, levels are sorted by their character format, which
may not correspond to their numeric sort sequence (for example, noninteger levels).
Therefore, it is advisable to include a desired format for numeric levels or to use the
ORDER=INTERNAL option in the PROC MIXED statement to ensure that levels
are sorted by their internal values.

Implications of the Nonfull-Rank Parameterization
For models with fixed-effects involving class variables, there are more design
columns inX constructed than there are degrees of freedom for the effect. Thus,
there are linear dependencies among the columns ofX. In this event, all of the pa-
rameters are not estimable; there is an infinite number of solutions to the mixed model
equations. PROC MIXED uses a generalized (g2) inverse to obtain values for the es-
timates (Searle 1971). The solution values are not displayed unless you specify the
SOLUTION option in the MODEL statement. The solution has the characteristic that
estimates are 0 whenever the design column for that parameter is a linear combination
of previous columns. With this parameterization, hypothesis tests are constructed to
test linear functions of the parameters that are estimable.

Some procedures (such as the CATMOD procedure) reparameterize models to full
rank using restrictions on the parameters. PROC GLM and PROC MIXED do not
reparameterize, making the hypotheses that are commonly tested more understand-
able. Refer to Goodnight (1978) for additional reasons for not reparameterizing.

Missing Level Combinations
PROC MIXED handles missing level combinations of classification variables simi-
larly to the way PROC GLM does. Both procedures delete fixed-effects parameters
corresponding to missing levels in order to preserve estimability. However, PROC
MIXED does not delete missing level combinations for random-effects parameters
because linear combinations of the random-effects parameters are always estimable.
These conventions can affect the way you specify your CONTRAST and ESTIMATE
coefficients.

Default Output

The following sections describe the output PROC MIXED produces by default. This
output is organized into various tables, and they are discussed in order of appearance.

Model Information
The “Model Information” table describes the model, some of the variables it involves,
and the method used in fitting it. It also lists the method (profile, fit, factor, or none)
for handling the residual variance in the model. Theprofile method concentrates the
residual variance out of the optimization problem, whereas thefit method retains it
as a parameter in the optimization. Thefactor method keeps the residual fixed, and
noneis displayed when a residual variance is not a part of the model.
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The “Model Information” table also has a row labeled Fixed Effects SE Method. This
row describes the method used to compute the approximate standard errors for the
fixed-effects parameter estimates and related functions of them. The two possibilities
for this row are Model-Based, which is the default method, and Empirical, which
results from using the EMPIRICAL option in the PROC MIXED statement.

For ODS purposes, the label of the “Model Information” table is “ModelInfo.”

Class Level Information
The “Class Level Information” table lists the levels of every variable specified in
the CLASS statement. You should check this information to make sure the data are
correct. You can adjust the order of the CLASS variable levels with the ORDER=
option in the PROC MIXED statement. For ODS purposes, the label of the “Class
Level Information” table is “ClassLevels.”

Dimensions
The “Dimensions” table lists the sizes of relevant matrices. This table can be useful
in determining CPU time and memory requirements. For ODS purposes, the label of
the “Dimensions” table is “Dimensions.”

Iteration History
The “Iteration History” table describes the optimization of the residual log likelihood
or log likelihood described on page 2152. The function to be minimized (theobjective
function) is�2l for ML and�2lR for REML; the column name of the objective func-
tion in the “Iteration History” table is “-2 Log Like” for ML and “-2 Res Log Like”
for REML. The minimization is performed using a ridge-stabilized Newton-Raphson
algorithm, and the rows of this table describe the iterations that this algorithm takes
in order to minimize the objective function.

The Evaluations column of the “Iteration History” table tells how many times the
objective function is evaluated during each iteration.

The Criterion column of the “Iteration History” table is, by default, a relative Hessian
convergence quantity given by

g0kH
�1
k gk

jfkj

wherefk is the value of the objective function at iterationk, gk is the gradient (first
derivative) offk, andHk is the Hessian (second derivative) offk. If Hk is singular,
then PROC MIXED uses the following relative quantity:

g0kgk

jfkj

To prevent the division byjfkj, use the ABSOLUTE option in the PROC MIXED
statement. To use a relative function or gradient criterion, use the CONVF or
CONVG options, respectively.

The Hessian criterion is considered superior to function and gradient criteria because
it measures orthogonality rather than lack of progress (Bates and Watts 1988). Pro-
vided the initial estimate is feasible and the maximum number of iterations is not

SAS OnlineDoc: Version 8



Default Output � 2163

exceeded, the Newton-Raphson algorithm is considered to have converged when the
criterion is less than the tolerance specified with the CONVF, CONVG, or CONVH
option in the PROC MIXED statement. The default tolerance is 1E�8. If conver-
gence is not achieved, PROC MIXED displays the estimates of the parameters at the
last iteration.

A convergence criterion that is missing indicates that a boundary constraint has been
dropped; it is usually not a cause for concern.

If you specify the ITDETAILS option in the PROC MIXED statement, then the co-
variance parameter estimates at each iteration are included as additional columns in
the “Iteration History” table.

For ODS purposes, the label of the “Iteration History” table is “IterHistory.”

Covariance Parameter Estimates
The “Covariance Parameter Estimates” table contains the estimates of the parameters
inG andR (see the “Estimating G and R in the Mixed Model” section on page 2151).
Their values are labeled in the “Cov Parm” table along with Subject and Group infor-
mation if applicable. The estimates are displayed in the Estimate column and are the
results of one of the following estimation methods: REML, ML, MIVQUE0, SSCP,
Type1, Type2, or Type3.

If you specify the RATIO option in the PROC MIXED statement, the Ratio column is
added to the table listing the ratios of each parameter estimate to that of the residual
variance.

Requesting the COVTEST option in the PROC MIXED statement produces the Std
Error, Z Value, and Pr >jZj columns. The Std Error column contains the approximate
standard errors of the covariance parameter estimates. These are the square roots
of the diagonal elements of the observed inverse Fisher information matrix, which
equals2H�1, whereH is the Hessian matrix. TheH matrix consists of the second
derivatives of the objective function with respect to the covariance parameters; refer
to Wolfinger, Tobias, and Sall (1994) for formulas. When you use the SCORING=
option and PROC MIXED converges without stopping the scoring algorithm, PROC
MIXED uses the expected Hessian matrix to compute the covariance matrix instead
of the observed Hessian. The observed or expected inverse Fisher information matrix
can be viewed as an asymptotic covariance matrix of the estimates.

The Z Value column is the estimate divided by its approximate standard error, and
the Pr >jZj column is the two-tailed area of the standard Gaussian density outside of
theZ-value. These statistics constitute Wald tests of the covariance parameters, and
they are valid only asymptotically.

Caution: Wald tests can be unreliable in small samples.

For ODS purposes, the label of the “Covariance Parameter Estimates” table is “Cov-
Parms.”

Fitting Information
The “Fitting Information” table provides some statistics about the estimated mixed
model. Expressions for the log likelihood are provided in the “Estimating G and R
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in the Mixed Model” section on page 2151. If the log likelihood is an extremely
large negative number, then PROC MIXED has deemed the estimatedVmatrix to be
singular. In this case, all subsequent results should be viewed with caution.

Akaike’s Information Criterion (AIC) (Akaike 1974) is computed as

AIC = l(�̂)� q

wherel(�̂) is the maximized log likelihood or the residual log likelihood, andq is the
effective number of covariance parameters (those not estimated to be on a boundary
constraint). It can be used to compare models with the same fixed effects but different
variance structures; the model having the largest AIC is deemed best.

Schwarz’s Bayesian Criterion (BIC) (Schwarz 1978) is computed as

BIC = l(�̂)�
1

2
q logN�

whereN� is computed as described in the IC option on page 2100. Again, models
with larger BIC are preferred, but note that BIC penalizes models with a greater
number of covariance parameters more than AIC does, and the two criteria may not
agree as to which covariance model is best.

The IC option in the PROC MIXED statement produces an “Information Criteria”
table of these criteria and two others in a variety of different forms.

For ODS purposes, the label of the “Model Fitting Information” table is “FitStatis-
tics.”

Null Model Likelihood Ratio Test
If one covariance model is a submodel of another, you can carry out a likelihood ratio
test for the significance of the more general model by computing�2 times the differ-
ence between their log likelihoods. Then compare this statistic to the�2 distribution
with degrees of freedom equal to the difference in the number of parameters for the
two models.

This test is reported in the “Null Model Likelihood Ratio Test” table to determine
whether it is necessary to model the covariance structure of the data at all. The “Chi-
Square” value is�2 times the log likelihood from the null model minus�2 times
the log likelihood from the fitted model, where the null model is the one with only
the fixed effects listed in the MODEL statement andR = �2I. This statistic has
an asymptotic�2-distribution withq � 1 degrees of freedom, whereq is the effec-
tive number of covariance parameters (those not estimated to be on a boundary con-
straint). The Pr > ChiSq column contains the upper-tail area from this distribution.
Thisp-value can be used to assess the significance of the model fit.
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This test is not produced for cases where the null hypothesis lies on the boundary
of the parameter space, which is typically for variance component models. This is
because the standard asymptotic theory does not apply in this case (Self and Liang
1987, Case 5).

If you specify a PARMS statement, PROC MIXED constructs a likelihood ratio test
between the best model from the grid search and the final fitted model and reports the
results in the “Parameter Search” table.

For ODS purposes, the label of the “Null Model Likelihood Ratio Test” table is
“LRT.”

Type 3 Tests of Fixed Effects
The “Type 3 Tests of Fixed Effects” table contains hypothesis tests for the significance
of each of the fixed effects, that is, those effects you specify in the MODEL statement.
By default, PROC MIXED computes these tests by first constructing a Type IIIL

matrix (see Chapter 12, “The Four Types of Estimable Functions,”) for each effect.
ThisL matrix is then used to compute the followingF-statistic:

F =
b�0
L0[L(X0 bV�1X)�L0]�Lb�

rank(L)

A p-value for the test is computed as the tail area beyond this statistic from anF-
distribution with NDF and DDF degrees of freedom. The numerator degrees of free-
dom (NDF) is the row rank ofL, and the denominator degrees of freedom is computed
using one of the methods described under the DDFM= option on page 2117. Small
values of thep-value (typically less than 0.05 or 0.01) indicate a significant effect.

You can use the HTYPE= option in the MODEL statement to obtain tables of Type I
(sequential) tests and Type II (adjusted) tests in addition to or instead of the table of
Type III (partial) tests.

You can use the CHISQ option in the MODEL statement to obtain Wald�2 tests
of the fixed effects. These are carried out by using the numerator of theF-statistic
and comparing it with the�2 distribution with NDF degrees of freedom. It is more
liberal than theF-test because it effectively assumes an infinite denominator degrees
of freedom.

For ODS purposes, the label of the “Type 1 Tests of Fixed Effects” through the “Type
3 Tests of Fixed Effects” tables are “Tests1” through “Tests3,” respectively.
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Changes in Output

The SAS System now features a new Output Delivery System (ODS), replacing the
old one used by PROC MIXED in Version 6. The primary changes involve the re-
placing of the MAKE statement and the- print - and - disk - global variables
with the new ODS statement. The following table lists some typical conversions you
need to make.

Table 41.6. ODS Conversions for PROC MIXED

Version 6 Syntax Versions 7 and 8 Syntax
make ’covparms’ out=cp; ods output covparms=cp;
make ’covparms’ out=cp noprint; ods listing exclude covparms;

ods output covparms=cp;
%global - print - ; %let - print - =off; ods listing close;
%global - print - ; %let - print - =on; ods listing;

Each table created by PROC MIXED has a name associated with it, and you must use
this name to reference the table when using ODS statements. These names are listed
in Table 41.7.

Table 41.7. ODS Tables Produced in PROC MIXED

Table Name Description Required Statement / Option
AccRates acceptance rates for posterior

sampling
PRIOR

AsyCorr asymptotic correlation matrix of
covariance parameters

PROC MIXED ASYCORR

AsyCov asymptotic covariance matrix of
covariance parameters

PROC MIXED ASYCOV

Base base densities used for posterior
sampling

PRIOR

Bound computed bound for posterior rejec-
tion sampling

PRIOR

CholG Cholesky root of the estimatedG
matrix

RANDOM / GC

CholR Cholesky root of blocks of the esti-
matedR matrix

REPEATED / RC

CholV Cholesky root of blocks of the esti-
matedV matrix

RANDOM / VC

ClassLevels level information from the CLASS
statement

default output

Coef L matrix coefficients E option on MODEL,
CONTRAST, ESTIMATE,
or LSMEANS

Contrasts results from the CONTRAST
statements

CONTRAST

ConvergenceStatusconvergence status default
CorrB approximate correlation matrix of

fixed-effects parameter estimates
MODEL / CORRB
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Table 41.7. (continued)

Table Name Description Required Statement / Option
CovB approximate covariance matrix of

fixed-effects parameter estimates
MODEL / COVB

CovParms estimated covariance parameters default output
Diffs differences of LS-means LSMEANS / DIFF (or PDIFF)
Dimensions dimensions of the model default output
Estimates results from ESTIMATE statements ESTIMATE
FitStatistics fit statistics default
G estimatedGmatrix RANDOM / G
GCorr correlation matrix from the

estimatedGmatrix
RANDOM / GCORR

HLM1 Type 1 Hotelling-Lawley-McKeon
tests of fixed effects

MODEL / HTYPE=1 and
REPEATED / HLM TYPE=UN

HLM2 Type 2 Hotelling-Lawley-McKeon
tests of fixed effects

MODEL / HTYPE=2 and
REPEATED / HLM TYPE=UN

HLM3 Type 3 Hotelling-Lawley-McKeon
tests of fixed effects

REPEATED / HLM TYPE=UN

HLPS1 Type 1 Hotelling-Lawley-Pillai-
Samson tests of fixed effects

MODEL / HTYPE=1 and
REPEATED / HLPS TYPE=UN

HLPS2 Type 2 Hotelling-Lawley-Pillai-
Samson tests of fixed effects

MODEL / HTYPE=1 and
REPEATED / HLPS TYPE=UN

HLPS3 Type 3 Hotelling-Lawley-Pillai-
Samson tests of fixed effects

REPEATED / HLPS TYPE=UN

InfoCrit information criteria PROC MIXED IC
InvCholG inverse Cholesky root of the

estimatedGmatrix
RANDOM / GCI

InvCholR inverse Cholesky root of blocks of
the estimatedR matrix

REPEATED / RCI

InvCholV inverse Cholesky root of blocks of
the estimatedV matrix

RANDOM / VCI

InvCovB inverse of approximate covariance
matrix of fixed-effects parameter
estimates

MODEL / COVBI

InvG inverse of the estimatedG
matrix

RANDOM / GI

InvR inverse of blocks of the estimatedR
matrix

REPEATED / RI

InvV inverse of blocks of the estimatedV
matrix

RANDOM / VI

IterHistory iteration history default output
LRT likelihood ratio test default output
LSMeans LS-means LSMEANS
MMEq mixed model equations PROC MIXED MMEQ
MMEqSol mixed model equations solution PROC MIXED MMEQSOL
ModelInfo model information default output
ParmSearch parameter search values PARMS
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Table 41.7. (continued)

Table Name Description Required Statement / Option
Posterior posterior sampling information PRIOR
R blocks of the estimatedR matrix REPEATED / R
RCorr correlation matrix from a blocks of

the estimatedR matrix
REPEATED / RCORR

Search posterior density search table PRIOR / PSEARCH
Slices tests of LS-means slices LSMEANS / SLICE=
SolutionF fixed effects solution vector MODEL / S
SolutionR random effects solution vector RANDOM / S
Tests1 Type 1 tests of fixed effects MODEL / HTYPE=1
Tests2 Type 2 tests of fixed effects MODEL / HTYPE=2
Tests3 Type 3 tests of fixed effects default output
Type1 Type 1 analysis of variance PROC MIXED METHOD=TYPE1
Type2 Type 2 analysis of variance PROC MIXED METHOD=TYPE2
Type3 Type 3 analysis of variance PROC MIXED METHOD=TYPE3
Trans transformation of covariance

parameters
PRIOR / PTRANS

V blocks of the estimatedV matrix RANDOM / V
VCorr correlation matrix from blocks of the

estimatedV matrix
RANDOM / VCORR

In Table 41.7, “Coefficients” refers to multiple tables produced by the E, E1, E2, or E3
options in the MODEL statement and the E option in the CONTRAST, ESTIMATE,
and LSMEANS statements. You can create one large data set of these tables with a
statement similar to

ods output Coefficients=c;

Be aware that the number of variables in this data set is determined by the first table
created. To create separate data sets, use

ods output Coefficients(match_all)=c;

Here the resulting data sets are named C1, C2, C3, etc. The same principles ap-
ply to data sets created from the “R,” “CholR,” “InvCholR,” “RCorr,” “InvR,” “V,”
“CholV,” “InvCholV,” “VCorr,” and “InvV” tables.

In Table 41.7, the following changes have occured from Version 6. The “Predicted,”
“PredMeans,” and “Sample” tables from Version 6 no longer exist and have been re-
placed by output data sets; see descriptions of the MODEL statement options OUT-
PRED= on page 2120 and OUTPREDM= on page 2121 and the PRIOR statement
option OUT= on page 2128 for more details. The “ML” and “REML” tables from
Version 6 have been replaced by the “IterHistory” table. The “Tests,” “HLM,” and
“HLPS” tables from Version 6 have been renamed “Tests3,” “HLM3,” and “HLPS3.”

Table 41.8 lists the variable names associated with the data sets created when you use
the ODS OUTPUT option in conjunction with the preceding tables. In Table 41.8,n
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is used to denote a generic number that is dependent upon the particular data set and
model you select, and it can assume a different value each time it is used (even within
the same table). The phrasemodel specificappears in rows of the affected tables to
indicate that columns in these tables depend upon the variables you specify in the
model.

Caution: There exists a danger of name collisions with the variables in themodel
specifictables in Table 41.8 and variables in your input data set. You should avoid
using input variables with the same names as the variables in these tables.

Table 41.8. Variable Names for the ODS Tables Produced in PROC MIXED

Table Name Variables
AsyCorr Row, CovParm, CovP1–CovPn
AsyCov Row, CovParm, CovP1–CovPn
BaseDen Type, Parm1–Parmn
Bound Technique, Converge, Iterations, Evaluations, LogBound,

CovP1–CovPn, TCovP1–TCovPn
CholG model specific, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Row, Col1–Coln
CholR Index, Row, Col1–Coln
CholV Index, Row, Col1–Coln
ClassLevels Class, Levels, Values
Coefficients model specific, LMatrix, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Row1–Rown
Contrasts Label, NumDF, DenDF, ChiSquare, FValue, ProbChiSq, ProbF
CorrB model specific, Effect, Row, Col1–Coln
CovB model specific, Effect, Row, Col1–Coln
CovParms CovParm, Subject, Group, Estimate, StandardError, ZValue, ProbZ,

Alpha, Lower, Upper
Diffs model specific, Effect, Margins, ByLevel, AT variables, Diff, Stan-

dardError, DF, tValue, Tails, Probt, Adjustment, Adjp, Alpha,
Lower, Upper, AdjLow, AdjUpp

Dimensions Descr, Value
Estimates Label, Estimate, StandardError, DF, tValue, Tails, Probt, Alpha,

Lower, Upper
FitStatistics Descr, Value
G model specific, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Row, Col1–Coln
GCorr model specific, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Row, Col1–Coln
HLM1 Effect, NumDF, DenDF, FValue, ProbF
HLM2 Effect, NumDF, DenDF, FValue, ProbF
HLM3 Effect, NumDF, DenDF, FValue, ProbF
HLPS1 Effect, NumDF, DenDF, FValue, ProbF
HLPS2 Effect, NumDF, DenDF, FValue, ProbF
HLPS3 Effect, NumDF, DenDF, FValue, ProbF
InfoCrit Better, CovParms, MeanParms, Likelihood, AIC, HQIC, BIC, CAIC
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Table 41.8. (continued)

Table Name Variables
InvCholG model specific, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Row, Col1–Coln
InvCholR Index, Row, Col1–Coln
InvCholV Index, Row, Col1–Coln
InvCovB model specific, Effect, Row, Col1–Coln
InvG model specific, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Row, Col1–Coln
InvR Index, Row, Col1–Coln
InvV Index, Row, Col1–Coln
IterHistory CovP1–CovPn, Iteration, Evaluations, M2ResLogLike,

M2LogLike, Criterion
LRT DF, ChiSquare, ProbChiSq
LSMeans model specific, Effect, Margins, ByLevel, AT variables, Esti-

mate, StandardError, DF, tValue, Probt, Alpha, Lower, Upper,
Cov1–Covn, Corr1–Corrn

MMEq model specific, Effect, Subject, Sub1–Subn, Group,
Group1–Groupn, Row, Col1–Coln

MMEqSol model specific, Effect, Subject, Sub1–Subn, Group,
Group1–Groupn, Row, Col1–Coln

ModelInfo Descr, Value
ParmSearch CovP1–CovPn, Var, ResLogLike, M2ResLogLike2, LogLike,

M2LogLike, LogDetH
Posterior Descr, Value
R Index, Row, Col1–Coln
RCorr Index, Row, Col1–Coln
Search Parm, TCovP1–TCovPn, Posterior
Slices model specific, Effect, Margins, ByLevel, AT variables, NumDF,

DenDF, FValue, ProbF
SolutionF model specific, Effect, Estimate, StandardError, DF, tValue, Probt,

Alpha, Lower, Upper
SolutionR model specific, Effect, Subject, Sub1–Subn, Group,

Group1–Groupn, Estimate, StdErrPred, DF, tValue, Probt, Al-
pha, Lower, Upper

Tests1 Effect, NumDF, DenDF, ChiSquare, FValue, ProbChiSq, ProbF
Tests2 Effect, NumDF, DenDF, ChiSquare, FValue, ProbChiSq, ProbF
Tests3 Effect, NumDF, DenDF, ChiSquare, FValue, ProbChiSq, ProbF
Type1 Source, DF, SS, MS, EMS, ErrorTerm, ErrorDF, FValue, ProbF
Type2 Source, DF, SS, MS, EMS, ErrorTerm, ErrorDF, FValue, ProbF
Type3 Source, DF, SS, MS, EMS, ErrorTerm, ErrorDF, FValue, ProbF
Trans Prior, TCovP, CovP1–CovPn
V Index, Row, Col1–Coln
VCorr Index, Row, Col1–Coln

Some of the variables listed in Table 41.8 are created only when you have specified
certain options in the relevant PROC MIXED statements.
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The following changes have occurred in these variables from Version 6. Nearly all
underscores have been removed from variable names in order to be compatible and
consistent with other procedures. Some of the variable names have been changed (for
example, T has been changed to tValue and PT to Probt) for the same reason. You
may have to modify some of your Version 6 code to accommodate these changes.

Computational Issues

Computational Method
In addition to numerous matrix-multiplication routines, PROC MIXED frequently
uses the sweep operator (Goodnight 1979) and the Cholesky root (Golub and Van
Loan 1989). The routines perform a modified W transformation (Goodnight and
Hemmerle 1979) forG-side likelihood calculations and a direct method forR-side
likelihood calculations. For the Type IIIF-tests, PROC MIXED uses the algorithm
described in Chapter 30, “The GLM Procedure.”

PROC MIXED uses a ridge-stabilized Newton-Raphson algorithm to optimize either
a full (ML) or residual (REML) likelihood function. The Newton-Raphson algo-
rithm is preferred to the EM algorithm (Lindstrom and Bates 1988). PROC MIXED
profiles the likelihood with respect to the fixed effects and also with respect to the
residual variance whenever it appears reasonable to do so. The residual profiling can
be avoided by using the NOPROFILE option of the PROC MIXED statement. PROC
MIXED uses the MIVQUE0 method (Rao 1972; Giesbrecht 1989) to compute initial
values.

The likelihoods that PROC MIXED optimizes are usually well-defined continuous
functions with a single optimum. The Newton-Raphson algorithm typically performs
well and finds the optimum in a few iterations. It is a quadratically converging al-
gorithm, meaning that the error of the approximation near the optimum is squared at
each iteration. The quadratic convergence property is evident when the convergence
criterion drops to zero by factors of ten or more.

Table 41.9. Notation for Order Calculations

Symbol Number
p columns ofX
g columns ofZ
N observations
q covariance parameters
t maximum observations per subject
S subjects

Using the notation from Table 41.9, the following are estimates of the computa-
tional speed of the algorithms used in PROC MIXED. For likelihood calculations,
the crossproducts matrix construction is of orderN(p+g)2 and the sweep operations
are of order(p+g)3. The first derivative calculations for parameters inG are of order
qg3 for ML and q(g3 + pg2 + p2g) for REML. If you specify a subject effect in the
RANDOM statement and if you are not using the REPEATED statement, then replace
g by g=S andq by qS in these calculations. The first derivative calculations for pa-
rameters inR are of orderqS(t3+gt2+g2t) for ML andqS(t3+(p+g)t2+(p2+g2)t)
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for REML. For the second derivatives, replaceq by q(q + 1)=2 in the first derivative
expressions. When you specify bothG- andR-side parameters (that is, when you
use both the RANDOM and REPEATED statements), then additional calculations
are required of an order equal to the sum of the orders forG andR. Considerable
execution times may result in this case.

For further details about the computational techniques used in PROC MIXED, refer
to Wolfinger, Tobias, and Sall (1994).

Parameter Constraints
By default, some covariance parameters are assumed to satisfy certain boundary con-
straints during the Newton-Raphson algorithm. For example, variance components
are constrained to be nonnegative and autoregressive parameters are constrained to
be between�1 and 1. You can remove these constraints with the NOBOUND option
in the PARMS statement, but this may lead to estimates that produce an infinite like-
lihood. You can also introduce or change boundary constraints with the LOWERB=
and UPPERB= options in the PARMS statement.

During the Newton-Raphson algorithm, a parameter may be set equal to one of its
boundary constraints for a few iterations and then it may move away from the bound-
ary. You see a missing value in the Criterion column of the “Iteration History” table
whenever a boundary constraint is dropped.

For some data sets the final estimate of a parameter may equal one of its boundary
constraints. This is usually not a cause for concern, but it may lead you to consider
a different model. For instance, a variance component estimate can equal zero; in
this case, you may want to drop the corresponding random effect from the model.
However, be aware that changing the model in this fashion can impact degrees of
freedom calculations.

Convergence Problems
For some data sets, the Newton-Raphson algorithm can fail to converge. Non-
convergence can result from a number of causes, including flat or ridged likelihood
surfaces and ill-conditioned data.

It is also possible for PROC MIXED to converge to a point that is not the global opti-
mum of the likelihood, although this usually occurs only with the spatial covariance
structures.

If you experience convergence problems, the following points may be helpful:

� One useful tool is the PARMS statement, which lets you input initial values
for the covariance parameters and performs a grid search over the likelihood
surface.

� Sometimes the Newton-Raphson algorithm does not perform well when two
of the covariance parameters are on a different scale; that is, they are several
orders of magnitude apart. This is because the Hessian matrix is processed
jointly for the two parameters, and elements of it corresponding to one of the
parameters can become close to internal tolerances in PROC MIXED. In this
case, you can improve stability by rescaling the effects in the model so that the
covariance parameters are on the same scale.
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� Data that is extremely large or extremely small can adversely affect results
because of the internal tolerances in PROC MIXED. Rescaling it can improve
stability.

� For stubborn problems, you may want to specify ODS OUTPUT COV-
PARMS= data-set-name to output the “CovParms” table as a precautionary
measure. That way, if the problem does not converge, you can read the final
parameter values back into a new run with the PARMSDATA= option in the
PARMS statement.

� Fisher scoring can be more robust than Newton-Raphson to poor MIVQUE(0)
starting values. Specifying a SCORING= value of 5 or so may help to recover
from poor starting values.

� Tuning the singularity options SINGULAR=, SINGCHOL=, and SINGRES=
in the MODEL statement may improve the stability of the optimization process.

� Tuning the MAXITER= and MAXFUNC= options in the PROC MIXED state-
ment can save resources. Also, the ITDETAILS option displays the values of
all of the parameters at each iteration.

� Using the NOPROFILE and NOBOUND options in the PROC MIXED state-
ment may help convergence, although they can produce unusual results.

� Although the CONVH convergence criterion usually gives the best results, you
may want to try CONVF or CONVG, possibly along with the ABSOLUTE
option.

� If the convergence criterion bottoms out at a relatively small value such as
1E�7 but never gets less than 1E�8, you may want to specify CONVH=1E�6
in the PROC MIXED statement to get results; however, interpret the results
with caution.

� An infinite likelihood during the iteration process means that the Newton-
Raphson algorithm has stepped into a region where either theR orVmatrix is
nonpositive definite. This is usually no cause for concern as long as iterations
continue. If PROC MIXED stops because of an infinite likelihood, recheck
your model to make sure that no observations from the same subject are pro-
ducing identical rows inR or V and that you have enough data to estimate
the particular covariance structure you have selected. Any time that the final
estimated likelihood is infinite, subsequent results should be interpreted with
caution.

� A nonpositive definite Hessian matrix can indicate a surface saddlepoint or
linear dependencies among the parameters.

� A warning message about the singularities ofX changing indicates that there is
some linear dependency in the estimate ofX0 bV�1X that is not found inX0X.
This can adversely affect the likelihood calculations and optimization process.
If you encounter this problem, make sure that your model specification is rea-
sonable and that you have enough data to estimate the particular covariance
structure you have selected. Rearranging effects in the MODEL statement so
that the most significant ones are first can help because PROC MIXED sweeps
the estimate ofX0V�1X in the order of the MODEL effects and the sweep is

SAS OnlineDoc: Version 8



2174 � Chapter 41. The MIXED Procedure

more stable if larger pivots are dealt with first. If this does not help, specify-
ing starting values with the PARMS statement can place the optimization on a
different and possibly more stable path.

� Lack of convergence may indicate model misspecification or a violation of the
normality assumption.

Memory
Let p be the number of columns inX, and letg be the number of columns inZ.
For large models, most of the memory resources are required for holding symmetric
matrices of orderp, g, andp+ g. The approximate memory requirement in bytes is

40(p2 + g2) + 32(p + g)2

If you have a large model that exceeds the memory capacity of your computer, see
the suggestions listed under “Computing Time.”

Computing Time
PROC MIXED is computationally intensive, and execution times can be long. In
addition to the CPU time used in collecting sums and cross products and in solving the
mixed model equations (as in PROC GLM), considerable CPU time is often required
to compute the likelihood function and its derivatives. These latter computations are
performed for every Newton-Raphson iteration.

If you have a model that takes too long to run, the following suggestions may be
helpful:

� Examine the “Model Information” table to find out the number of columns in
theX andZ matrices. A large number of columns in either matrix can greatly
increase computing time. You may want to eliminate some higher order effects
if they are too large.

� If you have aZmatrix with a lot of columns, use the DDFM=BW option in the
MODEL statement to eliminate the time required for the containment method.

� If possible, “factor out” a common effect from the effects in the RANDOM
statement and make it the SUBJECT= effect. This creates a block-diagonalG

matrix and can often speed calculations.

� If possible, use the same or nested SUBJECT= effects in all RANDOM and
REPEATED statements.

� If your data set is very large, you may want to analyze it in pieces. The BY
statement can help implement this strategy.

� In general, specify random effects with a lot of levels in the REPEATED state-
ment and those with a few levels in the RANDOM statement.

� The METHOD=MIVQUE0 option runs faster than either the METHOD=REML
or METHOD=ML option because it is noniterative.

� You can specify known values for the covariance parameters using the HOLD=
or NOITER option in the PARMS statement or the GDATA= option in the
RANDOM statement. This eliminates the need for iteration.
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� The LOGNOTE option in the PROC MIXED statement writes periodic mes-
sages to the SAS log concerning the status of the calculations. It can help you
diagnose where the slow down is occurring.

Examples

The following are basic examples of the use of PROC MIXED. More examples
and details can be found in Littell et al. (1996), Wolfinger (1997), Verbeke and
Molenberghs (1997), Murray (1998), Singer (1998), and Sullivan, Dukes, and Losina
(1999).

Example 41.1. Split-Plot Design
PROC MIXED can fit a variety of mixed models. One of the most common mixed
models is the split-plot design. The split-plot design involves two experimental fac-
tors, A andB. Levels ofA are randomly assigned to whole plots (main plots), and
levels ofB are randomly assigned to split plots (subplots) within each whole plot.
The design provides more precise information aboutB than aboutA, and it often
arises whenA can be applied only to large experimental units. An example is where
A represents irrigation levels for large plots of land andB represents different crop
varieties planted in each large plot.

Consider the following data from Stroup (1989a), which arise from a balanced split-
plot design with the whole plots arranged in a randomized complete-block design.
The variableA is the whole-plot factor, and the variableB is the subplot factor. A
traditional analysis of these data involves the construction of the whole-plot error
(A*Block) to testA and the pooled residual error (B*Block andA*B*Block) to testB
andA*B. To carry out this analysis with PROC GLM, you must use a TEST statement
to obtain the correctF-test forA.

Performing a mixed model analysis with PROC MIXED eliminates the need for the
error term construction. PROC MIXED estimates variance components forBlock,
A*Block, and the residual, and it automatically incorporates the correct error terms
into test statistics.

data sp;
input Block A B Y @@;
datalines;

1 1 1 56 1 1 2 41
1 2 1 50 1 2 2 36
1 3 1 39 1 3 2 35
2 1 1 30 2 1 2 25
2 2 1 36 2 2 2 28
2 3 1 33 2 3 2 30
3 1 1 32 3 1 2 24
3 2 1 31 3 2 2 27
3 3 1 15 3 3 2 19
4 1 1 30 4 1 2 25
4 2 1 35 4 2 2 30
4 3 1 17 4 3 2 18
;
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proc mixed;
class A B Block;
model Y = A B A*B;
random Block A*Block;

run;

The variablesA, B, andBlock are listed as classification variables in the CLASS
statement. The columns of model matrixX consist of indicator variables correspond-
ing to the levels of the fixed effectsA, B, andA*B listed on the right-hand side in the
MODEL statement. The dependent variableY is listed on the left-hand side in the
MODEL statement.

The columns of the model matrixZ consist of indicator variables corresponding to
the levels of the random effectsBlock andA*Block. TheG matrix is diagonal and
contains the variance components ofBlock andA*Block. TheRmatrix is also diag-
onal and contains the residual variance.

The SAS code produces Output 41.1.1.

Output 41.1.1. Split-Plot Example

The Mixed Procedure

Model Information

Data Set WORK.SP
Dependent Variable Y
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

The “Model Information” table lists basic information about the split-plot model.
REML is used to estimate the variance components, and the residual variances are
profiled out of the optimization.

The Mixed Procedure

Class Level Information

Class Levels Values

A 3 1 2 3
B 2 1 2
Block 4 1 2 3 4
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The “Class Level Information” table lists the levels of all variables specified in the
CLASS statement. You can check this table to make sure that the data are correct.

The Mixed Procedure

Dimensions

Covariance Parameters 3
Columns in X 12
Columns in Z 16
Subjects 1
Max Obs Per Subject 24
Observations Used 24
Observations Not Used 0
Total Observations 24

The “Dimensions” table lists the magnitudes of various vectors and matrices. TheX

matrix is seen to be24� 12, and theZ matrix is24� 16.

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 139.81461222
1 1 119.76184570 0.00000000

Convergence criteria met.

PROC MIXED estimates the variance components forBlock, A*Block, and the resid-
ual by REML. The REML estimates are the values that maximize the likelihood of a
set of linearly independent error contrasts, and they provide a correction for the down-
ward bias found in the usual maximum likelihood estimates. The objective function
is�2 times the logarithm of the restricted likelihood, and PROC MIXED minimizes
this objective function to obtain the estimates.

The minimization method is the Newton-Raphson algorithm, which uses the first and
second derivatives of the objective function to iteratively find its minimum. The “Iter-
ation History” table records the steps of that optimization process. For this example,
only one iteration is required to obtain the estimates. The Evaluations column reveals
that the restricted likelihood is evaluated once for each of the iterations. A criterion
of 0 indicates that the Newton-Raphson algorithm has converged.
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The Mixed Procedure

Covariance Parameter
Estimates

Cov Parm Estimate

Block 62.3958
A*Block 15.3819
Residual 9.3611

The REML estimates for the variance components ofBlock, A*Block, and the resid-
ual are 62.40, 15.38, and 9.36, respectively, as listed in the Estimate column of the
“Covariance Parameter Estimates” table.

The Mixed Procedure

Fit Statistics

Res Log Likelihood -59.9
Akaike’s Information Criterion -62.9
Schwarz’s Bayesian Criterion -62.0
-2 Res Log Likelihood 119.8

The “Fitting Information” table lists several pieces of information about the fitted
mixed model, including the residual log likelihood. Akaike’s and Schwarz’s criteria
can be used to compare different models; the ones with larger values are preferred.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

A 2 6 4.07 0.0764
B 1 9 19.39 0.0017
A*B 2 9 4.02 0.0566

Finally, the fixed effects are tested using Type III estimable functions. The tests match
the one obtained from the following PROC GLM code:

proc glm data=sp;
class A B Block;
model Y = A B A*B Block A*Block;
test h=A e=A*Block;

run;

You can continue this analysis by producing solutions for the fixed and random ef-
fects and then testing various linear combinations of them by using the CONTRAST
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and ESTIMATE statements. If you use the same CONTRAST and ESTIMATE state-
ments with PROC GLM, the test statistics correspond to the fixed-effects-only model.
The test statistics from PROC MIXED incorporate the random effects.

The various “inference space” contrasts given by Stroup (1989a) can be implemented
via the ESTIMATE statement. Consider the following examples:

estimate ’a1 mean narrow’
intercept 1 A 1 B .5 .5 A*B .5 .5 |
Block .25 .25 .25 .25
A*Block .25 .25 .25 .25 0 0 0 0 0 0 0 0;

estimate ’a1 mean intermed’
intercept 1 A 1 B .5 .5 A*B .5 .5 |
Block .25 .25 .25 .25;

estimate ’a1 mean broad’
intercept 1 a 1 b .5 .5 A*B .5 .5;

These statements result in Output 41.1.2.

Output 41.1.2. Inference Space Results

The Mixed Procedure

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

a1 mean narrow 32.8750 1.0817 9 30.39 <.0001
a1 mean intermed 32.8750 2.2396 9 14.68 <.0001
a1 mean broad 32.8750 4.5403 9 7.24 <.0001

Note that all the estimates are equal, but their standard errors increase with the size
of the inference space. The narrow inference space consists of the observed levels
of Block andA*Block, and thet-statistic value of 30.39 applies only to these levels.
This is the samet-statistic computed by PROC GLM, because it computes standard
errors from the narrow inference space. The intermediate inference space consists of
the observed levels ofBlock and the entire population of levels from whichA*Block
are sampled. Thet-statistic value of 14.68 applies to this intermediate space. The
broad inference space consists of arbitrary random levels of bothBlock andA*Block,
and thet-statistic value of 7.24 is appropriate. Note that the larger the inference
space, the weaker the conclusion. However, the broad inference space is usually the
one of interest, and even in this space conclusive results are common. The highly
significantp-value for ’a1 mean broad’ is an example. You can also obtain the ’a1
mean broad’ result by specifyingA in an LSMEANS statement. For more discussion
of the inference space concept, refer to McLean, Sanders, and Stroup (1991).

The following statements illustrate another feature of the RANDOM statement. Re-
call that the basic code for a split-plot design with whole plots arranged in randomized
blocks is as follows.
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proc mixed;
class A B Block;
model Y = A B A*B;
random Block A*Block;

run;

An equivalent way of specifying this model is

proc mixed data=sp;
class A B Block;
model Y = A B A*B;
random intercept A / subject=Block;

run;

In general, if all of the effects in the RANDOM statement can be nested within one
effect, you can specify that one effect using the SUBJECT= option. The subject effect
is, in a sense, “factored out” of the random effects. The specification using the SUB-
JECT= effect can result in quicker execution times for large problems because PROC
MIXED is able to perform the likelihood calculations separately for each subject.

Example 41.2. Repeated Measures

The following data are from Pothoff and Roy (1964) and consist of growth measure-
ments for 11 girls and 16 boys at ages 8, 10, 12, and 14. Some of the observations are
suspect (for example, the third observation for person 20); however, all of the data
are used here for comparison purposes.

The analysis strategy employs a linear growth curve model for the boys and girls
as well as a variance-covariance model that incorporates correlations for all of the
observations arising from the same person. The data are assumed to be Gaussian, and
their likelihood is maximized to estimate the model parameters. Refer to Jennrich
and Schluchter (1986), Louis (1988), Crowder and Hand (1990), Diggle, Liang, and
Zeger (1994), and Everitt (1995) for overviews of this approach to repeated measures.
Jennrich and Schluchter present results for the Pothoff and Roy data from various
covariance structures. The PROC MIXED code to fit an unstructured variance matrix
(their Model 2) is as follows:

data pr;
input Person Gender $ y1 y2 y3 y4;
y=y1; Age=8; output;
y=y2; Age=10; output;
y=y3; Age=12; output;
y=y4; Age=14; output;
drop y1-y4;
datalines;

1 F 21.0 20.0 21.5 23.0
2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0
4 F 23.5 24.5 25.0 26.5
5 F 21.5 23.0 22.5 23.5
6 F 20.0 21.0 21.0 22.5
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7 F 21.5 22.5 23.0 25.0
8 F 23.0 23.0 23.5 24.0
9 F 20.0 21.0 22.0 21.5

10 F 16.5 19.0 19.0 19.5
11 F 24.5 25.0 28.0 28.0
12 M 26.0 25.0 29.0 31.0
13 M 21.5 22.5 23.0 26.5
14 M 23.0 22.5 24.0 27.5
15 M 25.5 27.5 26.5 27.0
16 M 20.0 23.5 22.5 26.0
17 M 24.5 25.5 27.0 28.5
18 M 22.0 22.0 24.5 26.5
19 M 24.0 21.5 24.5 25.5
20 M 23.0 20.5 31.0 26.0
21 M 27.5 28.0 31.0 31.5
22 M 23.0 23.0 23.5 25.0
23 M 21.5 23.5 24.0 28.0
24 M 17.0 24.5 26.0 29.5
25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0
;

proc mixed data=pr method=ml covtest;
class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=un subject=Person r;

run;

To follow Jennrich and Schluchter, this example uses maximum likelihood
(METHOD=ML) instead of the default REML to estimate the unknown covari-
ance parameters. The COVTEST option requests asymptotic tests of all of the
covariance parameters.

The MODEL statement first lists the dependent variableY. The fixed effects are then
listed after the equals sign. The variableGender requests a different intercept for the
girls and boys,Age models an overall linear growth trend, andGender*Age makes
the slopes different over time. It is actually not necessary to specifyAge separately,
but doing so enables PROC MIXED to carry out a test for heterogeneous slopes. The
S option requests the display of the fixed-effects solution vector.

The REPEATED statement contains no effects, taking advantage of the default as-
sumption that the observations are ordered similarly for each subject. The TYPE=UN
option requests an unstructured block for each SUBJECT=Person. TheRmatrix is,
therefore, block diagonal with 27 blocks, each block consisting of identical 4�4 un-
structured matrices. The 10 parameters of these unstructured blocks make up the
covariance parameters estimated by maximum likelihood. The R option requests that
the first block of R be displayed.

The results from this analysis are shown in Output 41.2.1.
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Output 41.2.1. Repeated Measures with Unstructured Covariance Matrix

The Mixed Procedure

Model Information

Data Set WORK.PR
Dependent Variable y
Covariance Structure Unstructured
Subject Effect Person
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

The covariance structure is listed as “Unstructured” here, and no residual variance is
used with this structure. The default degrees-of-freedom method here is “Between-
Within.”

The Mixed Procedure

Class Level Information

Class Levels Values

Person 27 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27

Gender 2 F M

Note thatPerson has 27 levels andGender has 2.

The Mixed Procedure

Dimensions

Covariance Parameters 10
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4
Observations Used 108
Observations Not Used 0
Total Observations 108

The 10 covariance parameters result from the4� 4 unstructured blocks ofR. There
is no Z matrix for this model, and each of the 27 subjects has a maximum of 4
observations.
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The Mixed Procedure

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 2 419.47721707 0.00000152
2 1 419.47704812 0.00000000

Convergence criteria met.

Three Newton-Raphson iterations are required to find the maximum likelihood esti-
mates. The default relative Hessian criterion has a final value less than 1E�8, indi-
cating the convergence of the Newton-Raphson algorithm and the attainment of an
optimum.

The Mixed Procedure

Estimated R Matrix for Person 1

Row Col1 Col2 Col3 Col4

1 5.1192 2.4409 3.6105 2.5222
2 2.4409 3.9279 2.7175 3.0624
3 3.6105 2.7175 5.9798 3.8235
4 2.5222 3.0624 3.8235 4.6180

The preceding 4�4 matrix is the estimated unstructured covariance matrix. It is the
estimate of the first block ofR, and the other 26 blocks all have the same estimate.

The Mixed Procedure

Covariance Parameter Estimates

Standard Z
Cov Parm Subject Estimate Error Value Pr Z

UN(1,1) Person 5.1192 1.4169 3.61 0.0002
UN(2,1) Person 2.4409 0.9835 2.48 0.0131
UN(2,2) Person 3.9279 1.0824 3.63 0.0001
UN(3,1) Person 3.6105 1.2767 2.83 0.0047
UN(3,2) Person 2.7175 1.0740 2.53 0.0114
UN(3,3) Person 5.9798 1.6279 3.67 0.0001
UN(4,1) Person 2.5222 1.0649 2.37 0.0179
UN(4,2) Person 3.0624 1.0135 3.02 0.0025
UN(4,3) Person 3.8235 1.2508 3.06 0.0022
UN(4,4) Person 4.6180 1.2573 3.67 0.0001

The preceding table lists the 10 estimated covariance parameters in order; note their
correspondence to the first block ofR displayed previously. The parameter estimates
are labeled according to their location in the block in the Cov Parm column, and all of
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these estimates are associated withPerson as the subject effect. The Std Error col-
umn lists approximate standard errors of the covariance parameters obtained from the
inverse Hessian matrix. These standard errors lead to approximate WaldZ-statistics,
which are compared with the standard normal distribution. The results of these tests
indicate that all the parameters are significantly different from 0; however, the Wald
test can be unreliable in small samples.

To carry out Wald tests of various linear combinations of these parameters, use the
following procedure. First, run the code again, adding the ASYCOV option and an
ODS statement:

ods output CovParms=cp AsyCov=asy;
proc mixed data=pr method=ml covtest asycov;

class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=un subject=Person r;

run;

This creates two data sets,cp andasy, which contain the covariance parameter esti-
mates and their asymptotic variance covariance matrix, respectively. Then read these
data sets into the SAS/IML matrix programming language as follows:

proc iml;
use cp;
read all var {Estimate} into est;
use asy;
read all var (’CovP1’:’CovP10’) into asy;

You can then construct your desired linear combinations and corresponding quadratic
forms with theasy matrix.

The Mixed Procedure

Fit Statistics

Log Likelihood -209.7
Akaike’s Information Criterion -219.7
Schwarz’s Bayesian Criterion -226.2
-2 Log Likelihood 419.5

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

9 58.76 <.0001

The maximized value of the likelihood equals�209:7, and the AIC value is 10 (the
number of covariance parameters) less.

The null model likelihood ratio test (LRT) is highly significant for this model, indi-
cating that the unstructured covariance matrix is preferred to the diagonal one of the
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ordinary least-squares null model. The degrees of freedom for this test is 9, which is
the difference between 10 and the 1 parameter for the null model’s diagonal matrix.

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Gender Estimate Error DF t Value Pr > |t|

Intercept 15.8423 0.9356 25 16.93 <.0001
Gender F 1.5831 1.4658 25 1.08 0.2904
Gender M 0 . . . .
Age 0.8268 0.07911 25 10.45 <.0001
Age*Gender F -0.3504 0.1239 25 -2.83 0.0091
Age*Gender M 0 . . . .

The preceding table lists the solution vector for the fixed effects. The estimate of the
boys’ intercept is15:84, while that for the girls is15:84+1:58 = 17:42. Similarly, the
estimate for the boys’ slope is 0.827, while that for the girls is0:827�0:350 = 0:477.
Thus the girls’ starting point is larger than that for the boys, but their growth rate is
about half that of the boys.

Note that two of the estimates equal 0; this is a result of the overparameterized model
used by PROC MIXED. You can obtain a full rank parameterization by using the
following MODEL statement:

model y = Gender Gender*Age / noint s;

Here, the NOINT option causes the different intercepts to be fit directly as the two
levels ofGender. However, this alternative specification results in different tests for
these effects.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Gender 1 25 1.17 0.2904
Age 1 25 110.54 <.0001
Age*Gender 1 25 7.99 0.0091

The “Type 3 Tests of Fixed Effects” table displays Type III tests for all of the fixed
effects. These tests are partial in the sense that they account for all of the other fixed
effects in the model. In addition, you can use the HTYPE= option in the MODEL
statement to obtain Type I (sequential) or Type II (also partial) tests of effects.

It is usually best to consider higher-order terms first, and in this case the
Age*Gender test reveals a difference between the slopes that is statistically signif-
icant at the 1% level. Note that thep-value for this test (0:0091) is the same as the
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p-value in the “Age*Gender F” row in the “Solution for Fixed Effects” table and that
theF -statistic (7:99) is the square of thet-statistic (�2:83), ignoring rounding error.
Similar connections are evident among the other rows in these two tables.

TheAge test is one for an overall growth curve accounting for possible heterogeneous
slopes, and it is highly significant. Finally, theGender row tests the null hypothesis
of a common intercept, and this hypothesis cannot be rejected from these data.

As an alternative to theF -tests shown here, you can carry out likelihood ratio tests
of various hypotheses by fitting the reduced models, subtracting�2 log likelihoods,
and comparing the resulting statistics with�2 distributions.

Since the different levels of the repeated effect represent different years, it is natural
to try fitting a time series model to the data within each subject. To obtain time series
structures inR, you can replace TYPE=UN with TYPE=AR(1) or TYPE=TOEP to
obtain the first- ornth-order autoregressive covariance matrices, respectively. For
example, the code to fit an AR(1) structure is

proc mixed data=pr method=ml;
class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=ar(1) sub=Person r;

run;

To fit a random coefficients model, use the following code:

proc mixed data=pr method=ml;
class Person Gender;
model y = Gender Age Gender*Age / s;
random intercept Age / type=un sub=Person g;

run;

This specifies an unstructured covariance matrix for the random intercept and slope.
In mixed model notation,G is block diagonal with identical 2�2 unstructured blocks
for each person. By default,R becomes�2I. See Example 41.5 for further informa-
tion on this model.

Finally, you can fit a compound symmetry structure by using TYPE=CS.

proc mixed data=pr method=ml covtest;
class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=cs subject=Person r;

run;

The results from this analysis are shown in Output 41.2.2.
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Output 41.2.2. Repeated Measures with Compound Symmetry Structure

The Mixed Procedure

Model Information

Data Set WORK.PR
Dependent Variable y
Covariance Structure Compound Symmetry
Subject Effect Person
Estimation Method ML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

The “Model Information” table is the same as before except for the change in “Co-
variance Structure.”

The Mixed Procedure

Class Level Information

Class Levels Values

Person 27 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27

Gender 2 F M

Dimensions

Covariance Parameters 2
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4
Observations Used 108
Observations Not Used 0
Total Observations 108

The compound symmetry structure has two parameters.

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 428.63905802 0.00000000

Convergence criteria met.

Since the data are balanced, only one step is required to find the estimates.
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The Mixed Procedure

Estimated R Matrix for Person 1

Row Col1 Col2 Col3 Col4

1 4.9052 3.0306 3.0306 3.0306
2 3.0306 4.9052 3.0306 3.0306
3 3.0306 3.0306 4.9052 3.0306
4 3.0306 3.0306 3.0306 4.9052

Note the compound symmetry structure here, which consists of a common covariance
with a diagonal enhancement.

The Mixed Procedure

Covariance Parameter Estimates

Standard Z
Cov Parm Subject Estimate Error Value Pr Z

CS Person 3.0306 0.9552 3.17 0.0015
Residual 1.8746 0.2946 6.36 <.0001

The common covariance is estimated to be 3.06, as listed in the CS row of the preced-
ing table, and the residual variance is estimated to be 1.90, as listed in the Residual
row. You can use these two numbers to estimate the intraclass correlation coeffi-
cient (ICC) for this model. Here, the ICC estimate equals 3.06/(3.06 + 1.90) = 0.62.
You can also obtain this number by adding the RCORR option to the REPEATED
statement.

The Mixed Procedure

Fit Statistics

Log Likelihood -214.3
Akaike’s Information Criterion -216.3
Schwarz’s Bayesian Criterion -217.6
-2 Log Likelihood 428.6

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

1 49.60 <.0001

In this case, the null model LRT has only one degree of freedom, corresponding to the
common covariance parameter. The test indicates that modeling this extra covariance
is superior to fitting the simple null model.
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The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Gender Estimate Error DF t Value Pr > |t|

Intercept 16.3406 0.9631 25 16.97 <.0001
Gender F 1.0321 1.5089 25 0.68 0.5003
Gender M 0 . . . .
Age 0.7844 0.07654 79 10.25 <.0001
Age*Gender F -0.3048 0.1199 79 -2.54 0.0130
Age*Gender M 0 . . . .

Note that the fixed effects estimates and their standard errors are not very different
from those in the preceding unstructured example.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Gender 1 25 0.47 0.5003
Age 1 79 111.10 <.0001
Age*Gender 1 79 6.46 0.0130

TheF-tests are also similar to those from the preceding unstructured example. Again,
the slopes are significantly different but the intercepts are not.

You can fit the same compound symmetry model with the following specification
using the RANDOM statement:

proc mixed data=pr method=ml;
class Person Gender;
model y = Gender Age Gender*Age / s;
random Person;

run;

Compound symmetry is the structure that Jennrich and Schluchter deemed best
among the ones they fit. To carry the analysis one step further, you can use the
GROUP= option to specify heterogeneity of this structure across girls and boys.

proc mixed data=pr method=ml;
class Person Gender;
model y = Gender Age Gender*Age / s;
repeated / type=cs subject=Person group=Gender;

run;

The results from this analysis are shown in Output 41.2.3.
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Output 41.2.3. Repeated Measures with Heterogeneous Structures

The Mixed Procedure

Model Information

Data Set WORK.PR
Dependent Variable y
Covariance Structure Compound Symmetry
Subject Effect Person
Group Effect Gender
Estimation Method ML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Between-Within

Note thatGender is listed as a “Group Effect.”

The Mixed Procedure

Class Level Information

Class Levels Values

Person 27 1 2 3 4 5 6 7 8 9 10 11 12 13
14 15 16 17 18 19 20 21 22 23
24 25 26 27

Gender 2 F M

Dimensions

Covariance Parameters 4
Columns in X 6
Columns in Z 0
Subjects 27
Max Obs Per Subject 4
Observations Used 108
Observations Not Used 0
Total Observations 108

The four covariance parameters result from the two compound symmetry structures
corresponding to the two levels ofGender.

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Log Like Criterion

0 1 478.24175986
1 1 408.81297228 0.00000000

Convergence criteria met.

Even with the heterogeneity, only one iteration is required for convergence.
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The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Group Estimate

Variance Person Gender F 0.5900
CS Person Gender F 3.8804
Variance Person Gender M 2.7577
CS Person Gender M 2.4463

The preceding table lists the heterogeneous estimates. Note that both the common
covariance and the diagonal enhancement differ between girls and boys.

The Mixed Procedure

Fit Statistics

Log Likelihood -204.4
Akaike’s Information Criterion -208.4
Schwarz’s Bayesian Criterion -211.0
-2 Log Likelihood 408.8

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 69.43 <.0001

Both Akaike’s Information Criterion (�208.4) and Schwarz’s Bayesian Criterion
(�211.0) are larger for this model than for the homogeneous compound symme-
try model (�216.3 and�217.6, respectively). This indicates that the heterogeneous
model is more appropriate. To construct the likelihood ratio test between the two
models, subtract the�2 log likelihood values:428:6 � 408:8 = 19:8. Comparing
this value with the�2 distribution with two degrees of freedom yields ap-value less
than 0.0001, again favoring the heterogeneous model.

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Gender Estimate Error DF t Value Pr > |t|

Intercept 16.3406 1.1130 25 14.68 <.0001
Gender F 1.0321 1.3890 25 0.74 0.4644
Gender M 0 . . . .
Age 0.7844 0.09283 79 8.45 <.0001
Age*Gender F -0.3048 0.1063 79 -2.87 0.0053
Age*Gender M 0 . . . .

Note that the fixed effects estimates are the same as in the homogeneous case, but the
standard errors are different.
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The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Gender 1 25 0.55 0.4644
Age 1 79 141.37 <.0001
Age*Gender 1 79 8.22 0.0053

The fixed effects tests are similar to those from previous models, although thep-
values do change as a result of specifying a different covariance structure. It is im-
portant for you to select a reasonable covariance structure in order to obtain valid
inferences for your fixed effects.

Example 41.3. Plotting the Likelihood

The data for this example are from Hemmerle and Hartley (1973) and are also used
as an example for the VARCOMP procedure. The response variable consists of mea-
surements from an oven experiment, and the model contains a fixed effectA and
random effectsB andA*B.

The SAS code is as follows:

data hh;
input a b y @@;
datalines;

1 1 237 1 1 254 1 1 246
1 2 178 1 2 179
2 1 208 2 1 178 2 1 187
2 2 146 2 2 145 2 2 141
3 1 186 3 1 183
3 2 142 3 2 125 3 2 136
;

ods output ParmSearch=parms;
proc mixed data=hh asycov mmeq mmeqsol covtest;

class a b;
model y = a / outp=predicted;
random b a*b;
lsmeans a;
parms (17 to 20 by .1) (.3 to .4 by .005) (1.0);

run;

proc print data=predicted;
run;

The ASYCOV option in the PROC statement requests the asymptotic variance ma-
trix of the covariance parameter estimates. This matrix is the observed inverse Fisher
information matrix, which equals2H�1, whereH is the Hessian matrix of the objec-
tive function evaluated at the final covariance parameter estimates. The MMEQ and
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MMEQSOL options in the PROC statement request that the mixed model equations
and their solution be displayed.

The OUTP= option in the MODEL statement produces the data setpredicted, con-
taining the predicted values. Least-squares means (LSMEANS) are requested for
A. The PARMS and ODS statements are used to construct a data set containing the
likelihood surface.

The results from this analysis are shown in Output 41.3.1.

Output 41.3.1. Plotting the Likelihood

The Mixed Procedure

Model Information

Data Set WORK.HH
Dependent Variable y
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

The “Model Information” table lists details about this variance components model.

The Mixed Procedure

Class Level Information

Class Levels Values

a 3 1 2 3
b 2 1 2

The “Class Level Information” table lists the levels forA andB.

The Mixed Procedure

Dimensions

Covariance Parameters 3
Columns in X 4
Columns in Z 8
Subjects 1
Max Obs Per Subject 16
Observations Used 16
Observations Not Used 0
Total Observations 16

The “Dimensions” table reveals thatX is 16 � 4 andZ is 16 � 8. Since there are
no SUBJECT= effects, PROC MIXED considers the data effectively to be from one
subject with 16 observations.
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The Mixed Procedure

Parameter Search

CovP1 CovP2 CovP3 Variance Res Log Like -2 Res Log Like

17.0000 0.3000 1.0000 80.1400 -52.4699 104.9399
17.0000 0.3050 1.0000 80.0466 -52.4697 104.9393
17.0000 0.3100 1.0000 79.9545 -52.4694 104.9388
17.0000 0.3150 1.0000 79.8637 -52.4692 104.9384
17.0000 0.3200 1.0000 79.7742 -52.4691 104.9381
17.0000 0.3250 1.0000 79.6859 -52.4690 104.9379
17.0000 0.3300 1.0000 79.5988 -52.4689 104.9378
17.0000 0.3350 1.0000 79.5129 -52.4689 104.9377
17.0000 0.3400 1.0000 79.4282 -52.4689 104.9377
17.0000 0.3450 1.0000 79.3447 -52.4689 104.9378

. . . . . .

. . . . . .

. . . . . .
20.0000 0.3550 1.0000 78.2003 -52.4683 104.9366
20.0000 0.3600 1.0000 78.1201 -52.4684 104.9368
20.0000 0.3650 1.0000 78.0409 -52.4685 104.9370
20.0000 0.3700 1.0000 77.9628 -52.4687 104.9373
20.0000 0.3750 1.0000 77.8857 -52.4689 104.9377
20.0000 0.3800 1.0000 77.8096 -52.4691 104.9382
20.0000 0.3850 1.0000 77.7345 -52.4693 104.9387
20.0000 0.3900 1.0000 77.6603 -52.4696 104.9392
20.0000 0.3950 1.0000 77.5871 -52.4699 104.9399
20.0000 0.4000 1.0000 77.5148 -52.4703 104.9406

Only a portion of the “Parameter Search” table is shown because the full listing has
651 rows.

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

1 2 104.93416367 0.00000000

Convergence criteria met.

Convergence is quick because PROC MIXED starts from the best value from the grid
search.

The Mixed Procedure

Covariance Parameter Estimates

Standard Z
Cov Parm Estimate Error Value Pr Z

b 1464.36 2098.01 0.70 0.2426
a*b 26.9581 59.6570 0.45 0.3257
Residual 78.8426 35.3512 2.23 0.0129
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The preceding table lists the variance components estimates. Note thatB is much
more variable thanA*B.

The Mixed Procedure

Asymptotic Covariance Matrix of Estimates

Row Cov Parm CovP1 CovP2 CovP3

1 b 4401640 1.2831 -273.32
2 a*b 1.2831 3558.96 -502.84
3 Residual -273.32 -502.84 1249.71

The asymptotic covariance matrix also reflects the large variability ofB relative to
A*B.

The Mixed Procedure

Fit Statistics

Res Log Likelihood -52.5
Akaike’s Information Criterion -55.5
Schwarz’s Bayesian Criterion -53.5
-2 Res Log Likelihood 104.9

PARMS Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

2 0.00 1.0000

The PARMS likelihood ratio test (LRT) compares the best model from the grid search
with the final fitted model. Since these models are nearly the same, the LRT is not
significant.
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The Mixed Procedure

Mixed Model Equations

Row Effect a b Col1 Col2 Col3 Col4 Col5 Col6 Col7

1 Intercept 0.2029 0.06342 0.07610 0.06342 0.1015 0.1015 0.03805
2 a 1 0.06342 0.06342 0.03805 0.02537 0.03805
3 a 2 0.07610 0.07610 0.03805 0.03805
4 a 3 0.06342 0.06342 0.02537 0.03805
5 b 1 0.1015 0.03805 0.03805 0.02537 0.1022 0.03805
6 b 2 0.1015 0.02537 0.03805 0.03805 0.1022
7 a*b 1 1 0.03805 0.03805 0.03805 0.07515
8 a*b 1 2 0.02537 0.02537 0.02537
9 a*b 2 1 0.03805 0.03805 0.03805

10 a*b 2 2 0.03805 0.03805 0.03805
11 a*b 3 1 0.02537 0.02537 0.02537
12 a*b 3 2 0.03805 0.03805 0.03805

Mixed Model Equations

Row Col8 Col9 Col10 Col11 Col12 Col13

1 0.02537 0.03805 0.03805 0.02537 0.03805 36.4143
2 0.02537 13.8757
3 0.03805 0.03805 12.7469
4 0.02537 0.03805 9.7917
5 0.03805 0.02537 21.2956
6 0.02537 0.03805 0.03805 15.1187
7 9.3477
8 0.06246 4.5280
9 0.07515 7.2676

10 0.07515 5.4793
11 0.06246 4.6802
12 0.07515 5.1115

The mixed model equations are analogous to the normal equations in the standard
linear model. For this example, rows 1–4 correspond to the fixed effects, rows 5–12
correspond to the random effects, and Col13 corresponds to the dependent variable.
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The Mixed Procedure

Mixed Model Equations Solution

Row Effect a b Col1 Col2 Col3 Col4 Col5 Col6 Col7

1 Intercept 761.84 -29.7718 -29.6578 -731.14 -733.22 -0.4680
2 a 1 -29.7718 59.5436 29.7718 -2.0764 2.0764 -14.0239
3 a 2 -29.6578 29.7718 56.2773 -1.0382 1.0382 0.4680
4 a 3
5 b 1 -731.14 -2.0764 -1.0382 741.63 722.73 -4.2598
6 b 2 -733.22 2.0764 1.0382 722.73 741.63 4.2598
7 a*b 1 1 -0.4680 -14.0239 0.4680 -4.2598 4.2598 22.8027
8 a*b 1 2 0.4680 -12.9342 -0.4680 4.2598 -4.2598 4.1555
9 a*b 2 1 -0.5257 1.0514 -12.9534 -4.7855 4.7855 2.1570

10 a*b 2 2 0.5257 -1.0514 -14.0048 4.7855 -4.7855 -2.1570
11 a*b 3 1 -12.4663 12.9342 12.4663 -4.2598 4.2598 1.9200
12 a*b 3 2 -14.4918 14.0239 14.4918 4.2598 -4.2598 -1.9200

Mixed Model Equations Solution

Row Col8 Col9 Col10 Col11 Col12 Col13

1 0.4680 -0.5257 0.5257 -12.4663 -14.4918 159.61
2 -12.9342 1.0514 -1.0514 12.9342 14.0239 53.2049
3 -0.4680 -12.9534 -14.0048 12.4663 14.4918 7.8856
4
5 4.2598 -4.7855 4.7855 -4.2598 4.2598 26.8837
6 -4.2598 4.7855 -4.7855 4.2598 -4.2598 -26.8837
7 4.1555 2.1570 -2.1570 1.9200 -1.9200 3.0198
8 22.8027 -2.1570 2.1570 -1.9200 1.9200 -3.0198
9 -2.1570 22.5560 4.4021 2.1570 -2.1570 -1.7134

10 2.1570 4.4021 22.5560 -2.1570 2.1570 1.7134
11 -1.9200 2.1570 -2.1570 22.8027 4.1555 -0.8115
12 1.9200 -2.1570 2.1570 4.1555 22.8027 0.8115

This solution matrix results from sweeping all but the last row of the mixed model
equations matrix. The final column contains a solution vector for the fixed and ran-
dom effects. The first four rows correspond to fixed effects and the last eight to
random effects.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

a 2 2 28.00 0.0345

TheA factor is significant at the 5% level.

The Mixed Procedure

Least Squares Means

Standard
Effect a Estimate Error DF t Value Pr > |t|

a 1 212.82 27.6014 2 7.71 0.0164
a 2 167.50 27.5463 2 6.08 0.0260
a 3 159.61 27.6014 2 5.78 0.0286
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The significance ofA appears to be from the difference between its first level and its
other two levels.

StdErr
Obs a b y Pred Pred DF Alpha Lower Upper Resid

1 1 1 237 242.723 4.72563 10 0.05 232.193 253.252 -5.7228
2 1 1 254 242.723 4.72563 10 0.05 232.193 253.252 11.2772
3 1 1 246 242.723 4.72563 10 0.05 232.193 253.252 3.2772
4 1 2 178 182.916 5.52589 10 0.05 170.603 195.228 -4.9159
5 1 2 179 182.916 5.52589 10 0.05 170.603 195.228 -3.9159
6 2 1 208 192.670 4.70076 10 0.05 182.196 203.144 15.3297
7 2 1 178 192.670 4.70076 10 0.05 182.196 203.144 -14.6703
8 2 1 187 192.670 4.70076 10 0.05 182.196 203.144 -5.6703
9 2 2 146 142.330 4.70076 10 0.05 131.856 152.804 3.6703

10 2 2 145 142.330 4.70076 10 0.05 131.856 152.804 2.6703
11 2 2 141 142.330 4.70076 10 0.05 131.856 152.804 -1.3297
12 3 1 186 185.687 5.52589 10 0.05 173.374 197.999 0.3134
13 3 1 183 185.687 5.52589 10 0.05 173.374 197.999 -2.6866
14 3 2 142 133.542 4.72563 10 0.05 123.013 144.072 8.4578
15 3 2 125 133.542 4.72563 10 0.05 123.013 144.072 -8.5422
16 3 2 136 133.542 4.72563 10 0.05 123.013 144.072 2.4578

The preceding output lists the predicted values from the model. These values are the
sum of the fixed effects estimates and the empirical best linear unbiased predictors
(EBLUPs) of the random effects. It is often useful to plot predicted values and resid-
uals to assess the adequacy of the model, using another SAS procedure to generate
plots and diagnostic measures.

To plot the likelihood surface using the G3D procedure from SAS/GRAPH software,
use the following source:

proc g3d data=parms;
plot CovP1*CovP2 = ResLogLike

/ ctop=red cbottom=blue caxis=black;
run;

The results from this plot are shown in Output 41.3.2. The peak of the surface is the
REML estimates for theB andA*B variance components.
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Output 41.3.2. Plot of Likelihood Surface

Example 41.4. Known G and R

This animal breeding example from Henderson (1984, p. 53) considers multiple
traits. The data are artificial and consist of measurements of two traits on three ani-
mals, but the second trait of the third animal is missing. Assuming an additive genetic
model, you can use PROC MIXED to predict the breeding value of both traits on all
three animals and also to predict the second trait of the third animal. The data are as
follows:

data h;
input Trait Animal Y;
datalines;

1 1 6
1 2 8
1 3 7
2 1 9
2 2 5
2 3 .
;

BothG andR are known.

G =

26666664

2 1 1 2 1 1
1 2 :5 1 2 :5
1 :5 2 1 :5 2
2 1 1 3 1:5 1:5
1 2 :5 1:5 3 :75
1 :5 2 1:5 :75 3

37777775
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R =

26666664

4 0 0 1 0 0
0 4 0 0 1 0
0 0 4 0 0 1
1 0 0 5 0 0
0 1 0 0 5 0
0 0 1 0 0 5

37777775
In order to readG into PROC MIXED using the GDATA= option in the RANDOM
statement, perform the following DATA step:

data g;
input Row Col1-Col6;
datalines;

1 2 1 1 2 1 1
2 1 2 .5 1 2 .5
3 1 .5 2 1 .5 2
4 2 1 1 3 1.5 1.5
5 1 2 .5 1.5 3 .75
6 1 .5 2 1.5 .75 3
;

The preceding data are in the dense representation for a GDATA= data set. You can
also construct a data set with the sparse representation usingRow, Col, andValue
variables, although this would require 21 observations instead of 6 for this example.

The PROC MIXED code is as follows:

proc mixed data=h mmeq mmeqsol;
class Trait Animal;
model Y = Trait / noint s outp=predicted;
random Trait*Animal / type=un gdata=g g gi s;
repeated / type=un sub=Animal r ri;
parms (4) (1) (5) / noiter;

run;

proc print data=predicted;
run;

The MMEQ and MMEQSOL options request the mixed model equations and their
solution. The variablesTrait andAnimal are classification variables, andTrait defines
the entireX matrix for the fixed-effects portion of the model, since the intercept
is omitted with the NOINT option. The fixed-effects solution vector and predicted
values are also requested using the S and OUTP= options, respectively.

The random effectTrait*Animal leads to aZ matrix with six columns, the first five
corresponding to the identity matrix and the last consisting of 0s. An unstructured
G matrix is specified using the TYPE=UN option, and it is read into PROC MIXED
from a SAS data set using the GDATA=G specification. The G and GI options request
the display ofG andG�1, respectively. The S option requests that the random-effects
solution vector be displayed.
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Note that the precedingR matrix is block diagonal if the data are sorted by animals.
The REPEATED statement exploits this fact by requestingR to have unstructured
2�2 blocks corresponding to animals, which are the subjects. The R and RI options
request that the estimated 2�2 blocks for the first animal and its inverse be displayed.
The PARMS statement lists the parameters of this 2�2 matrix. Note that the param-
eters fromG are not specified in the PARMS statement because they have already
been assigned using the GDATA= option in the RANDOM statement. The NOITER
option prevents PROC MIXED from computing residual (restricted) maximum like-
lihood estimates; instead, the known values are used for inferences.

The results from this analysis are shown in Output 41.4.1.

Output 41.4.1. Known G and R

The Mixed Procedure

Model Information

Data Set WORK.H
Dependent Variable Y
Covariance Structure Unstructured
Subject Effect Animal
Estimation Method REML
Residual Variance Method None
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

The “Unstructured” covariance structure applies to bothG andR here.

The Mixed Procedure

Class Level Information

Class Levels Values

Trait 2 1 2
Animal 3 1 2 3

The levels ofTrait andAnimal have been specified correctly.

The Mixed Procedure

Dimensions

Covariance Parameters 3
Columns in X 2
Columns in Z 6
Subjects 1
Max Obs Per Subject 6
Observations Used 5
Observations Not Used 1
Total Observations 6

The three covariance parameters indicated here correspond to those from theR ma-
trix. Those fromG are considered fixed and known because of the GDATA= option.
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The Mixed Procedure

Parameter Search

CovP1 CovP2 CovP3 Res Log Like -2 Res Log Like

4.0000 1.0000 5.0000 -7.3731 14.7463

The preceding table results from the PARMS statement.

The Mixed Procedure

Estimated R Matrix
for Subject 1

Row Col1 Col2

1 4.0000 1.0000
2 1.0000 5.0000

The block ofR corresponding to the first animal is shown in the “Estimated R Ma-
trix” table.

The Mixed Procedure

Estimated Inv(R) Matrix
for Subject 1

Row Col1 Col2

1 0.2632 -0.05263
2 -0.05263 0.2105

The inverse of the block ofR corresponding to the first animal is shown in the pre-
ceding table.
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The Mixed Procedure

Estimated G Matrix

Row Effect Trait Animal Col1 Col2 Col3 Col4

1 Trait*Animal 1 1 2.0000 1.0000 1.0000 2.0000
2 Trait*Animal 1 2 1.0000 2.0000 0.5000 1.0000
3 Trait*Animal 1 3 1.0000 0.5000 2.0000 1.0000
4 Trait*Animal 2 1 2.0000 1.0000 1.0000 3.0000
5 Trait*Animal 2 2 1.0000 2.0000 0.5000 1.5000
6 Trait*Animal 2 3 1.0000 0.5000 2.0000 1.5000

Estimated G Matrix

Row Col5 Col6

1 1.0000 1.0000
2 2.0000 0.5000
3 0.5000 2.0000
4 1.5000 1.5000
5 3.0000 0.7500
6 0.7500 3.0000

The preceding table lists theG matrix as specified in the GDATA= data set.

The Mixed Procedure

Estimated Inv(G) Matrix

Row Effect Trait Animal Col1 Col2 Col3 Col4

1 Trait*Animal 1 1 2.5000 -1.0000 -1.0000 -1.6667
2 Trait*Animal 1 2 -1.0000 2.0000 0.6667
3 Trait*Animal 1 3 -1.0000 2.0000 0.6667
4 Trait*Animal 2 1 -1.6667 0.6667 0.6667 1.6667
5 Trait*Animal 2 2 0.6667 -1.3333 -0.6667
6 Trait*Animal 2 3 0.6667 -1.3333 -0.6667

Estimated Inv(G) Matrix

Row Col5 Col6

1 0.6667 0.6667
2 -1.3333
3 -1.3333
4 -0.6667 -0.6667
5 1.3333
6 1.3333

The preceding table listsG�1. The blank values correspond to zeros.
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The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) Animal 4.0000
UN(2,1) Animal 1.0000
UN(2,2) Animal 5.0000

The parameters fromR are listed again.

The Mixed Procedure

Fit Statistics

Res Log Likelihood -7.4
Akaike’s Information Criterion -10.4
Schwarz’s Bayesian Criterion -10.1
-2 Res Log Likelihood 14.7

You can use this model-fitting information to compare this model with others.

The Mixed Procedure

Mixed Model Equations

Row Effect Trait Animal Col1 Col2 Col3 Col4

1 Trait 1 0.7763 -0.1053 0.2632 0.2632
2 Trait 2 -0.1053 0.4211 -0.05263 -0.05263
3 Trait*Animal 1 1 0.2632 -0.05263 2.7632 -1.0000
4 Trait*Animal 1 2 0.2632 -0.05263 -1.0000 2.2632
5 Trait*Animal 1 3 0.2500 -1.0000
6 Trait*Animal 2 1 -0.05263 0.2105 -1.7193 0.6667
7 Trait*Animal 2 2 -0.05263 0.2105 0.6667 -1.3860
8 Trait*Animal 2 3 0.6667

Mixed Model Equations

Row Col5 Col6 Col7 Col8 Col9

1 0.2500 -0.05263 -0.05263 4.6974
2 0.2105 0.2105 2.2105
3 -1.0000 -1.7193 0.6667 0.6667 1.1053
4 0.6667 -1.3860 1.8421
5 2.2500 0.6667 -1.3333 1.7500
6 0.6667 1.8772 -0.6667 -0.6667 1.5789
7 -0.6667 1.5439 0.6316
8 -1.3333 -0.6667 1.3333

The coefficients of the mixed model equations agree with Henderson (1984, p. 55).
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The Mixed Procedure

Mixed Model Equations Solution

Row Effect Trait Animal Col1 Col2 Col3 Col4

1 Trait 1 2.5508 1.5685 -1.3047 -1.1775
2 Trait 2 1.5685 4.5539 -1.4112 -1.3534
3 Trait*Animal 1 1 -1.3047 -1.4112 1.8282 1.0652
4 Trait*Animal 1 2 -1.1775 -1.3534 1.0652 1.7589
5 Trait*Animal 1 3 -1.1701 -0.9410 1.0206 0.7085
6 Trait*Animal 2 1 -1.3002 -2.1592 1.8010 1.0900
7 Trait*Animal 2 2 -1.1821 -2.1055 1.0925 1.7341
8 Trait*Animal 2 3 -1.1678 -1.3149 1.0070 0.7209

Mixed Model Equations Solution

Row Col5 Col6 Col7 Col8 Col9

1 -1.1701 -1.3002 -1.1821 -1.1678 6.9909
2 -0.9410 -2.1592 -2.1055 -1.3149 6.9959
3 1.0206 1.8010 1.0925 1.0070 0.05450
4 0.7085 1.0900 1.7341 0.7209 -0.04955
5 1.7812 1.0095 0.7197 1.7756 0.02230
6 1.0095 2.7518 1.6392 1.4849 0.2651
7 0.7197 1.6392 2.6874 0.9930 -0.2601
8 1.7756 1.4849 0.9930 2.7645 0.1276

The solution to the mixed model equations also matches that given by Henderson
(1984, p. 55).

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Trait Estimate Error DF t Value Pr > |t|

Trait 1 6.9909 1.5971 3 4.38 0.0221
Trait 2 6.9959 2.1340 3 3.28 0.0465

The estimates for the two traits are nearly identical, but the standard error of the
second one is larger because of the missing observation.

The Mixed Procedure

Solution for Random Effects

Std Err
Effect Trait Animal Estimate Pred DF t Value Pr > |t|

Trait*Animal 1 1 0.05450 1.3521 0 0.04 .
Trait*Animal 1 2 -0.04955 1.3262 0 -0.04 .
Trait*Animal 1 3 0.02230 1.3346 0 0.02 .
Trait*Animal 2 1 0.2651 1.6589 0 0.16 .
Trait*Animal 2 2 -0.2601 1.6393 0 -0.16 .
Trait*Animal 2 3 0.1276 1.6627 0 0.08 .
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The Estimate column lists the best linear unbiased predictions (BLUPs) of the breed-
ing values of both traits for all three animals. Thep-values are missing because the
default containment method for computing degrees of freedom results in zero degrees
of freedom for the random effects parameter tests.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Trait 2 3 10.59 0.0437

The two estimated traits are significantly different from zero at the 5% level.

StdErr
Obs Trait Animal Y Pred Pred DF Alpha Lower Upper Resid

1 1 1 6 7.04542 1.33027 0 0.05 . . -1.04542
2 1 2 8 6.94137 1.39806 0 0.05 . . 1.05863
3 1 3 7 7.01321 1.41129 0 0.05 . . -0.01321
4 2 1 9 7.26094 1.72839 0 0.05 . . 1.73906
5 2 2 5 6.73576 1.74077 0 0.05 . . -1.73576
6 2 3 . 7.12015 3.11701 0 0.05 . . .

The preceding table contains the predicted values of the observations based on the
trait and breeding value estimates, that is, the fixed and random effects. The predicted
values are not the predictions of future records in the sense that they do not contain
a component corresponding to a new observational error. Refer to Henderson (1984)
for information on predicting future records. The L95 and U95 columns usually
contain confidence limits for the predicted values; they are missing here because the
random-effects parameter degrees of freedom equals 0.

Example 41.5. Random Coefficients

This example comes from a pharmaceutical stability data simulation performed by
Obenchain (1990). The observed responses are replicate assay results, expressed in
percent of label claim, at various shelf ages, expressed in months. The desired mixed
model involves three batches of product that differ randomly in intercept (initial po-
tency) and slope (degradation rate). This type of model is also known as a hierarchical
or multilevel model (Singer 1998; Sullivan, Dukes, and Losina 1999).

The SAS code is as follows:

data rc;
input Batch Month @@;
Monthc = Month;
do i = 1 to 6;
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input Y @@;
output;

end;
datalines;

1 0 101.2 103.3 103.3 102.1 104.4 102.4
1 1 98.8 99.4 99.7 99.5 . .
1 3 98.4 99.0 97.3 99.8 . .
1 6 101.5 100.2 101.7 102.7 . .
1 9 96.3 97.2 97.2 96.3 . .
1 12 97.3 97.9 96.8 97.7 97.7 96.7
2 0 102.6 102.7 102.4 102.1 102.9 102.6
2 1 99.1 99.0 99.9 100.6 . .
2 3 105.7 103.3 103.4 104.0 . .
2 6 101.3 101.5 100.9 101.4 . .
2 9 94.1 96.5 97.2 95.6 . .
2 12 93.1 92.8 95.4 92.2 92.2 93.0
3 0 105.1 103.9 106.1 104.1 103.7 104.6
3 1 102.2 102.0 100.8 99.8 . .
3 3 101.2 101.8 100.8 102.6 . .
3 6 101.1 102.0 100.1 100.2 . .
3 9 100.9 99.5 102.2 100.8 . .
3 12 97.8 98.3 96.9 98.4 96.9 96.5
;

proc mixed data=rc;
class Batch;
model Y = Month / s;
random Int Month / type=un sub=Batch s;

run;

In the DATA step,Monthc is created as a duplicate ofMonth in order to allow both
a continuous and classification version of the same variable. The variableMonthc is
used in a subsequent analysis on page 2210.

In the PROC MIXED code,Batch is listed as the only classification variable. The
fixed effectMonth in the MODEL statement is not declared a classification variable;
thus it models a linear trend in time. An intercept is included as a fixed effect by
default, and the S option requests that the fixed-effects parameter estimates be pro-
duced.

The two RANDOM effects areInt and Month, modeling random intercepts and
slopes, respectively. Note thatIntercept andMonth are used as both fixed and ran-
dom effects. The TYPE=UN option in the RANDOM statement specifies an unstruc-
tured covariance matrix for the random intercept and slope effects. In mixed model
notation,G is block diagonal with unstructured 2�2 blocks. Each block corresponds
to a different level ofBatch, which is the SUBJECT= effect. The unstructured type
provides a mechanism for estimating the correlation between the random coefficients.
The S option requests the production of the random-effects parameter estimates.

The results from this analysis are shown in Output 41.5.1.
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Output 41.5.1. Random Coefficients Analysis

The Mixed Procedure

Model Information

Data Set WORK.RC
Dependent Variable Y
Covariance Structure Unstructured
Subject Effect Batch
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

The “Unstructured” covariance structure applies toG here.

The Mixed Procedure

Class Level Information

Class Levels Values

Batch 3 1 2 3

Batch is the only classification variable in this analysis, and it has three levels.

The Mixed Procedure

Dimensions

Covariance Parameters 4
Columns in X 2
Columns in Z Per Subject 2
Subjects 3
Max Obs Per Subject 36
Observations Used 84
Observations Not Used 24
Total Observations 108

The “Dimensions” table indicates that there are three subjects (corresponding to
batches). The 24 observations not used correspond to the missing values ofY in
the input data set.

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 367.02768461
1 1 350.32813577 0.00000000

Convergence criteria met.
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Only one iteration is required for convergence.

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate

UN(1,1) Batch 0.9768
UN(2,1) Batch -0.1045
UN(2,2) Batch 0.03717
Residual 3.2932

The estimated elements of the unstructured 2�2 matrix comprising the blocks ofG
are listed in the Estimate column. Note that the random coefficients are negatively
correlated.

The Mixed Procedure

Fit Statistics

Res Log Likelihood -175.2
Akaike’s Information Criterion -179.2
Schwarz’s Bayesian Criterion -177.4
-2 Res Log Likelihood 350.3

Null Model Likelihood Ratio Test

DF Chi-Square Pr > ChiSq

3 16.70 0.0008

The null model likelihood ratio test indicates a significant improvement over the null
model consisting of no random effects and a homogeneous residual error.

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 102.70 0.6456 2 159.08 <.0001
Month -0.5259 0.1194 2 -4.41 0.0478

The fixed effects estimates represent the estimated means for the random intercept
and slope, respectively.
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The Mixed Procedure

Solution for Random Effects

Std Err
Effect Batch Estimate Pred DF t Value Pr > |t|

Intercept 1 -1.0010 0.6842 78 -1.46 0.1474
Month 1 0.1287 0.1245 78 1.03 0.3047
Intercept 2 0.3934 0.6842 78 0.58 0.5669
Month 2 -0.2060 0.1245 78 -1.65 0.1021
Intercept 3 0.6076 0.6842 78 0.89 0.3772
Month 3 0.07731 0.1245 78 0.62 0.5365

The random effects estimates represent the estimated deviation from the mean inter-
cept and slope for each batch. Therefore, the intercept for the first batch is close to
102:7 � 1 = 101:7, while the intercepts for the other two batches are greater than
102.7. The second batch has a slope less than the mean slope of�0:526, while the
other two batches have slopes larger than�0:526.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Month 1 2 19.41 0.0478

The F-statistic in the “Type 3 Tests of Fixed Effects” table is the square of thet-
statistic used in the test ofMonth in the preceding “Solution for Fixed Effects” table.
Both statistics test the null hypothesis that the slope assigned toMonth equals 0, and
this hypothesis can barely be rejected at the 5% level.

It is also possible to fit a random coefficients model with error terms that follow a
nested structure (Fuller and Battese 1973). The following SAS code represents one
way of doing this:

proc mixed data=rc;
class Batch Monthc;
model Y = Month / s;
random Int Month Monthc / sub=Batch s;

run;

The variableMonthc is added to the CLASS and RANDOM statements, and it mod-
els the nested errors. Note thatMonth andMonthc are continuous and classifica-
tion versions of the same variable. Also, the TYPE=UN option is dropped from the
RANDOM statement, resulting in the default variance components model instead of
correlated random coefficients.

The results from this analysis are shown in Output 41.5.2.
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Output 41.5.2. Random Coefficients with Nested Errors Analysis

The Mixed Procedure

Model Information

Data Set WORK.RC
Dependent Variable Y
Covariance Structure Variance Components
Subject Effect Batch
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

Batch 3 1 2 3
Monthc 6 0 1 3 6 9 12

Dimensions

Covariance Parameters 4
Columns in X 2
Columns in Z Per Subject 8
Subjects 3
Max Obs Per Subject 36
Observations Used 84
Observations Not Used 24
Total Observations 108

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 367.02768461
1 4 277.51945360 .
2 1 276.97551718 0.00104208
3 1 276.90304909 0.00003174
4 1 276.90100316 0.00000004
5 1 276.90100092 0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept Batch 0
Month Batch 0.01243
Monthc Batch 3.7411
Residual 0.7969

For this analysis, the Newton-Raphson algorithm requires five iterations and nine
likelihood evaluations to achieve convergence. The missing value in the Criterion
column in iteration 1 indicates that a boundary constraint has been dropped.
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The estimate for theIntercept variance component equals 0. This occurs frequently
in practice and indicates that the restricted likelihood is maximized by setting this
variance component equal to 0. Whenever a zero variance component estimate oc-
curs, the following note appears in the SAS log:

NOTE: Estimated G matrix is not positive definite.

The remaining variance component estimates are positive, and the estimate corre-
sponding to the nested errors (MONTHC) is much larger than the other two.

The Mixed Procedure

Fit Statistics

Res Log Likelihood -138.5
Akaike’s Information Criterion -141.5
Schwarz’s Bayesian Criterion -140.1
-2 Res Log Likelihood 276.9

A comparison of AIC (�141.5) and SBC (�140.1) for this model with those of the
previous model (�179.2 and�177.4, respectively) favors the nested error model.
Strictly speaking, a likelihood ratio test cannot be carried out between the two mod-
els because one is not contained in the other; however, a cautious comparison of
likelihoods can be informative.

The Mixed Procedure

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 102.56 0.7287 2 140.74 <.0001
Month -0.5003 0.1259 2 -3.97 0.0579

The better-fitting covariance model impacts the standard errors of the fixed effects
parameter estimates more than the estimates themselves.
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The Mixed Procedure

Solution for Random Effects

Std Err
Effect Batch Monthc Estimate Pred DF t Value Pr > |t|

Intercept 1 0 . . . .
Month 1 -0.00028 0.09268 66 -0.00 0.9976
Monthc 1 0 0.2191 0.7896 66 0.28 0.7823
Monthc 1 1 -2.5690 0.7571 66 -3.39 0.0012
Monthc 1 3 -2.3067 0.6865 66 -3.36 0.0013
Monthc 1 6 1.8726 0.7328 66 2.56 0.0129
Monthc 1 9 -1.2350 0.9300 66 -1.33 0.1888
Monthc 1 12 0.7736 1.1992 66 0.65 0.5211
Intercept 2 0 . . . .
Month 2 -0.07571 0.09268 66 -0.82 0.4169
Monthc 2 0 -0.00621 0.7896 66 -0.01 0.9938
Monthc 2 1 -2.2126 0.7571 66 -2.92 0.0048
Monthc 2 3 3.1063 0.6865 66 4.53 <.0001
Monthc 2 6 2.0649 0.7328 66 2.82 0.0064
Monthc 2 9 -1.4450 0.9300 66 -1.55 0.1250
Monthc 2 12 -2.4405 1.1992 66 -2.04 0.0459
Intercept 3 0 . . . .
Month 3 0.07600 0.09268 66 0.82 0.4152
Monthc 3 0 1.9574 0.7896 66 2.48 0.0157
Monthc 3 1 -0.8850 0.7571 66 -1.17 0.2466
Monthc 3 3 0.3006 0.6865 66 0.44 0.6629
Monthc 3 6 0.7972 0.7328 66 1.09 0.2806
Monthc 3 9 2.0059 0.9300 66 2.16 0.0347
Monthc 3 12 0.002293 1.1992 66 0.00 0.9985

The random effects solution provides the empirical best linear unbiased predictions
(EBLUPs) for the realizations of the random intercept, slope, and nested errors. You
can use these values to compare batches and months.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Month 1 2 15.78 0.0579

The test ofMonth is similar to that from the previous model, although it is no longer
significant at the 5% level.

Example 41.6. Line-Source Sprinkler Irrigation

These data appear in Hanks et al. (1980), Johnson, Chaudhuri, and Kanemasu (1983),
and Stroup (1989b). Three cultivars (Cult) of winter wheat are randomly assigned to
rectangular plots within each of three blocks (Block). The nine plots are located
side-by-side, and a line-source sprinkler is placed through the middle. Each plot is
subdivided into twelve subplots, six to the north of the line-source, six to the south
(Dir). The two plots closest to the line-source represent the maximum irrigation level
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(Irrig=6), the two next-closest plots represent the next-highest level (Irrig=5), and so
forth.

This example is a case where bothG andR can be modeled. One of Stroup’s models
specifies a diagonalG containing the variance components forBlock, Block*Dir,
andBlock* Irrig, and a ToeplitzR with four bands. The SAS code to fit this model
and carry out some further analyses follows.

Caution: This analysis may require considerable CPU time.

data line;
length Cult$ 8;
input Block Cult$ @;
row = _n_;
do Sbplt=1 to 12;

if Sbplt le 6 then do;
Irrig = Sbplt;
Dir = ’North’;

end;
else do;

Irrig = 13 - Sbplt;
Dir = ’South’;

end;
input Y @; output;

end;
datalines;

1 Luke 2.4 2.7 5.6 7.5 7.9 7.1 6.1 7.3 7.4 6.7 3.8 1.8
1 Nugaines 2.2 2.2 4.3 6.3 7.9 7.1 6.2 5.3 5.3 5.2 5.4 2.9
1 Bridger 2.9 3.2 5.1 6.9 6.1 7.5 5.6 6.5 6.6 5.3 4.1 3.1
2 Nugaines 2.4 2.2 4.0 5.8 6.1 6.2 7.0 6.4 6.7 6.4 3.7 2.2
2 Bridger 2.6 3.1 5.7 6.4 7.7 6.8 6.3 6.2 6.6 6.5 4.2 2.7
2 Luke 2.2 2.7 4.3 6.9 6.8 8.0 6.5 7.3 5.9 6.6 3.0 2.0
3 Nugaines 1.8 1.9 3.7 4.9 5.4 5.1 5.7 5.0 5.6 5.1 4.2 2.2
3 Luke 2.1 2.3 3.7 5.8 6.3 6.3 6.5 5.7 5.8 4.5 2.7 2.3
3 Bridger 2.7 2.8 4.0 5.0 5.2 5.2 5.9 6.1 6.0 4.3 3.1 3.1
;

proc mixed;
class Block Cult Dir Irrig;
model Y = Cult|Dir|Irrig@2;
random Block Block*Dir Block*Irrig;
repeated / type=toep(4) sub=Block*Cult r;
lsmeans Cult|Irrig;
estimate ’Bridger vs Luke’ Cult 1 -1 0;
estimate ’Linear Irrig’ Irrig -5 -3 -1 1 3 5;
estimate ’B vs L x Linear Irrig’ Cult*Irrig

-5 -3 -1 1 3 5 5 3 1 -1 -3 -5;
run;

The preceding code uses the bar operator (j ) and the at sign ( @ ) to specify all
two-factor interactions betweenCult, Dir, andIrrig as fixed effects.
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The RANDOM statement sets up theZ andGmatrices corresponding to the random
effectsBlock, Block*Dir, andBlock* Irrig.

In the REPEATED statement, the TYPE=TOEP(4) option sets up the blocks of the
R matrix to be Toeplitz with four bands below and including the main diagonal.
The subject effect isBlock(Cult), and it produces nine 12�12 blocks. The R option
requests that the first block ofR be displayed.

Least-squares means (LSMEANS) are requested forCult, Irrig, andCult* Irrig, and a
few
ESTIMATE statements are specified to illustrate some linear combinations of the
fixed effects.

The results from this analysis are shown in Output 41.6.1.

Output 41.6.1. Line-Source Sprinkler Irrigation Analysis

The Mixed Procedure

Model Information

Data Set WORK.LINE
Dependent Variable Y
Covariance Structures Variance Components,

Toeplitz
Subject Effect Block*Cult
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

The Covariance Structures row reveals the two different structures assumed forG

andR.

The Mixed Procedure

Class Level Information

Class Levels Values

Block 3 1 2 3
Cult 3 Bridger Luke Nugaines
Dir 2 North South
Irrig 6 1 2 3 4 5 6

The levels of each class variable are listed as a single string in the Values column,
regardless of whether the levels are numeric or character.
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The Mixed Procedure

Dimensions

Covariance Parameters 7
Columns in X 48
Columns in Z 27
Subjects 1
Max Obs Per Subject 108
Observations Used 108
Observations Not Used 0
Total Observations 108

Even though there is a SUBJECT= effect in the REPEATED statement, the analysis
considers all of the data to be from one subject because there is no corresponding
SUBJECT= effect in the RANDOM statement.

The Mixed Procedure

Iteration History

Iteration Evaluations -2 Res Log Like Criterion

0 1 226.25427252
1 4 187.99336173 .
2 3 186.62579299 0.10431081
3 1 184.38218213 0.04807260
4 1 183.41836853 0.00886548
5 1 183.25111475 0.00075353
6 1 183.23809997 0.00000748
7 1 183.23797748 0.00000000

Convergence criteria met.

The Newton-Raphson algorithm converges successfully in seven iterations.
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The Mixed Procedure

Estimated R Matrix for Subject 1

Row Col1 Col2 Col3 Col4 Col5 Col6 Col7

1 0.2850 0.007986 0.001452 -0.09253
2 0.007986 0.2850 0.007986 0.001452 -0.09253
3 0.001452 0.007986 0.2850 0.007986 0.001452 -0.09253
4 -0.09253 0.001452 0.007986 0.2850 0.007986 0.001452 -0.09253
5 -0.09253 0.001452 0.007986 0.2850 0.007986 0.001452
6 -0.09253 0.001452 0.007986 0.2850 0.007986
7 -0.09253 0.001452 0.007986 0.2850
8 -0.09253 0.001452 0.007986
9 -0.09253 0.001452

10 -0.09253
11
12

Estimated R Matrix for Subject 1

Row Col8 Col9 Col10 Col11 Col12

1
2
3
4
5 -0.09253
6 0.001452 -0.09253
7 0.007986 0.001452 -0.09253
8 0.2850 0.007986 0.001452 -0.09253
9 0.007986 0.2850 0.007986 0.001452 -0.09253

10 0.001452 0.007986 0.2850 0.007986 0.001452
11 -0.09253 0.001452 0.007986 0.2850 0.007986
12 -0.09253 0.001452 0.007986 0.2850
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The first block of the estimatedR matrix has the TOEP(4) structure, and the obser-
vations that are three plots apart exhibit a negative correlation.

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Subject Estimate

Block 0.2194
Block*Dir 0.01768
Block*Irrig 0.03539
TOEP(2) Block*Cult 0.007986
TOEP(3) Block*Cult 0.001452
TOEP(4) Block*Cult -0.09253
Residual 0.2850

The preceding table lists the estimated covariance parameters from bothG andR.
The first three are the variance components making up the diagonalG, and the final
four make up the Toeplitz structure in the blocks ofR. The Residual row corresponds
to the variance of the Toeplitz structure, and it was the parameter profiled out during
the optimization process.

The Mixed Procedure

Fit Statistics

Res Log Likelihood -91.6
Akaike’s Information Criterion -98.6
Schwarz’s Bayesian Criterion -95.5
-2 Res Log Likelihood 183.2

The “�2 Res Log Likelihood” value is the same as the final value listed in the “Iter-
ation History” table.

The Mixed Procedure

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Cult 2 68 7.98 0.0008
Dir 1 2 3.95 0.1852
Cult*Dir 2 68 3.44 0.0379
Irrig 5 10 102.60 <.0001
Cult*Irrig 10 68 1.91 0.0580
Dir*Irrig 5 68 6.12 <.0001

Every fixed effect except forDir andCult* Irrig is significant at the 5% level.
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The Mixed Procedure

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

Bridger vs Luke -0.03889 0.09524 68 -0.41 0.6843
Linear Irrig 30.6444 1.4412 10 21.26 <.0001
B vs L x Linear Irrig -9.8667 2.7400 68 -3.60 0.0006

The “Estimates” table lists the results from the various linear combinations of fixed
effects specified in the ESTIMATE statements. Bridger is not significantly different
from Luke, andIrrig possesses a strong linear component. This strength appears to
be influencing the significance of the interaction.

The Mixed Procedure

Least Squares Means

Standard
Effect Cult Irrig Estimate Error DF t Value Pr > |t|

Cult Bridger 5.0306 0.2874 68 17.51 <.0001
Cult Luke 5.0694 0.2874 68 17.64 <.0001
Cult Nugaines 4.7222 0.2874 68 16.43 <.0001
Irrig 1 2.4222 0.3220 10 7.52 <.0001
Irrig 2 3.1833 0.3220 10 9.88 <.0001
Irrig 3 5.0556 0.3220 10 15.70 <.0001
Irrig 4 6.1889 0.3220 10 19.22 <.0001
Irrig 5 6.4000 0.3140 10 20.38 <.0001
Irrig 6 6.3944 0.3227 10 19.81 <.0001
Cult*Irrig Bridger 1 2.8500 0.3679 68 7.75 <.0001
Cult*Irrig Bridger 2 3.4167 0.3679 68 9.29 <.0001
Cult*Irrig Bridger 3 5.1500 0.3679 68 14.00 <.0001
Cult*Irrig Bridger 4 6.2500 0.3679 68 16.99 <.0001
Cult*Irrig Bridger 5 6.3000 0.3463 68 18.19 <.0001
Cult*Irrig Bridger 6 6.2167 0.3697 68 16.81 <.0001
Cult*Irrig Luke 1 2.1333 0.3679 68 5.80 <.0001
Cult*Irrig Luke 2 2.8667 0.3679 68 7.79 <.0001
Cult*Irrig Luke 3 5.2333 0.3679 68 14.22 <.0001
Cult*Irrig Luke 4 6.5500 0.3679 68 17.80 <.0001
Cult*Irrig Luke 5 6.8833 0.3463 68 19.87 <.0001
Cult*Irrig Luke 6 6.7500 0.3697 68 18.26 <.0001
Cult*Irrig Nugaines 1 2.2833 0.3679 68 6.21 <.0001
Cult*Irrig Nugaines 2 3.2667 0.3679 68 8.88 <.0001
Cult*Irrig Nugaines 3 4.7833 0.3679 68 13.00 <.0001
Cult*Irrig Nugaines 4 5.7667 0.3679 68 15.67 <.0001
Cult*Irrig Nugaines 5 6.0167 0.3463 68 17.37 <.0001
Cult*Irrig Nugaines 6 6.2167 0.3697 68 16.81 <.0001

The LS-means are useful in comparing the levels of the various fixed effects. For
example, it appears that irrigation levels 5 and 6 have virtually the same effect.

An interesting exercise is to try fitting other variance-covariance models to these data
and comparing them to this one using likelihood ratio tests, Akaike’s Information
Criterion, or Schwarz’s Bayesian Information Criterion. In particular, some spatial
models are worth investigating (Marx and Thompson 1987; Zimmerman and Harville
1991). The following is one example of spatial model code.
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proc mixed;
class Block Cult Dir Irrig;
model Y = Cult|Dir|Irrig@2;
repeated / type=sp(pow)(Row Sbplt)

sub=intercept;
run;

The TYPE=SP(POW)(ROW SBPLT) option in the REPEATED statement requests
the spatial power structure, with the two defining coordinate variables beingRow
andSbplt. The SUB=INTERCEPT option indicates that the entire data set is to be
considered as one subject, thereby modelingR as a dense 108�108 covariance ma-
trix. Refer to Wolfinger (1993) for further discussion of this example and additional
analyses.
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