David Stewart - Publications

Refereed papers

The Mathematical Reviews reference numbers are listed after the paper like this: (MR 2003a:70007).

  1. Michael Kratochvil, Devon Sigler, Jonathon Maack, and David Stewart, Two and three-stage scenario based modeling and optimization for wind and storage generation expansion planning, Journal submission, 2021.
  2. Palle Jorgensen and David Stewart, Approximation properties of ridge functions and Extreme Learning Machines, SIAM J on Mathematics of Data Science, vol. 3, no. 3, pp. 815-832, 2021. https://doi.org/10.1137/20M1356348

  3. Jeff Hajewski, Suely Oliveira, Ibrahim Emirahtoglu, and David Stewart, A Smoothing Algorithm for L1 Support Vector Machines, Journal submission; under revision, 2021.

  4. Jared Grove, Suely Oliveira, Anthony Pizzimenti and David Stewart, A k-medoids approach to exploring districting plans, Journal submission, 2021.

  5. Jeff Hajewski, Suely Oliveira, David Stewart and Laura Weiler, Exploring Trade-offs in Parallel Beam-ACO, 11th Annual Computing and Communication Workshop and Conference, IEEE CCWC 2021 - Virtual, USA, January 2021, pp. 1525-1534. https://doi.org/1525-34.10.1109/CCWC51732.2021.9376177

  6. Ryan Brummet, Md Kowsar Hossain, Octav Chipara, Ted Herman, David Stewart, Recorp: Receiver-Oriented Policies for Industrial Wireless Networks, to appear IEEE Transactions on Sensor Networks, 2021.

  7. J. L. Verniero, G. G. Howes, D. E Stewart, and K, G. Klein, Determining threshold Instrumental resolutions for resolving the velocity-space signature of ion Landau damping, J. Geophysical Research: Space Physics, vol. 125, no. 5, 2021. https://doi.org/10.1029/2020JA028361

  8. J. L. Verniero, G. G. Howes, D. E Stewart, and K, G. Klein, PATCH: Particle arrival time correlation for Heliophysics, J. Geophysical Research: Space Physics, vol. 126, no. 5, 2021. https://doi.org/10.1029/2020JA028940

  9. Jeff Hajewski, Suely Oliveira, David Stewart and Laura Weiler,gBeam-ACO: a greedy and faster variant of Beam-ACO, SWINGA workshop at GECCO 2020, pages 1434–1440, July 2020.  https://dl.acm.org/doi/10.1145/3377929.3398081 (https://arxiv.org/abs/2004.11137)

  10. Cory Kromer-Edwards, Suely Oliveira and David Stewart, Parallelizing Basis Pursuit Denoising, IJCNN International Joint Conference on Neural Networks 2019, Budapest, Hungary. https://doi.org/10.1109/IJCNN.2019.8851987

  11. D.E. Stewart and S. Oliveira. Efficient basis pursuit de-noising using active sets and homotopy. Fuzzy Systems and Data Mining Conference (FSDM 2018), Bangkok, Thailand, November 2018. https://doi.org/10.3233/978-1-61499-927-0-295

  12. J. Hajewski, S. Oliveira and D.E. Stewart. Smoothed Hinge Loss and Support Vector Machines. Workshop on Optimization Based Techniques for Emerging Data Mining Problems (OEDM18) as part of the IEEE International Conference on Data Mining ICDM 2018, Singapore, November 2018. https://doi.org/10.1109/ICDMW.2018.00174

  13. D.E. Stewart and C. Stiegler. ELMVIS+ and GradSwaps for Visualizing Complex Datasets. The 9th International Conference on Extreme Learning Machines (ELM2018), Singapore, November 2018

  14. Mukherjee, S., Stewart, D., Stewart, W., Lanier, L. L., Das, J. Connecting the dots across time: reconstruction of single-cell signalling trajectories using time-stamped data. Royal Society Open Science, September 2017.https://doi.org/10.1098/rsos.170811

  15. Mukherjee, S., Jensen, H., Stewart, W., Stewart, D., Ray, W. C., Chen, S.-Y., Nolan, G. P., Lanier, L. L., Das, J. In silico modeling identifies CD45 as a regulator of IL-2 synergy in the NKG2D-mediated activation of immature human NK cells. Science Signaling, AAAS, February, 2017. https://doi.org/10.1126/scisignal.aai9062

  16. D.E. Stewart. Nonuniqueness and fractional index convolution complementarity problems. Electronic J. Differential Equations, vol. 2014, no. 226, pp. 1-9, (2014).

  17. C.M. Oishi, J.Y. Yuan, J.A. Cuminato, and D.E. Stewart. Stability analysis of the Crank-Nicolson scheme: an application to time-dependent diffusion equations. BIT, Published online July 2014. (27 pp.) https://doi.org/10.1007/s10543-014-0509-x

  18. F. Petronetto, A. Paiva Neto, E. Helou, D.E. Stewart, L.G. Nonato. Meshfree Discrete Laplace-Beltrami Operator. Computer Graphics Forum, vol. 32, no. 6, pp. 214-226 (2013). https://doi.org/10.1111/cgf.12086.

  19. Marcelo O. Silva, Roseli A.F. Romero, Suely P. Oliveira and David E. Stewart. Improving the stability of algorithms for path planning based on boundary value problems. Far East J. Applied Math. vol. 69, no. 2, pp. 75-144 (2012). http://www.pphmj.com/abstract/7077.htm

  20. S. Oliveira and D. E. Stewart. Physically accurate granular flow simulation on GPUs. 20th High Performance Computing Symposium (HPC 2012), Lincoln, Nebraska, March 2012.

  21. S. Oliveira and D. E. Stewart. Clustering for Bioinformatics via Matrix Optimization In ACM BCB (Bioinformatics and Computational Biology) conference, Chicago, August 2011. https://doi.org/10.1145/2147805.2147900

  22. A.P. Pinheiro, D.E. Stewart, C.D. Maciel, J.C. Pereira, and S. Oliveira. Analysis of nonlinear dynamics of vocal folds using high-speed video observation and biomechanical modeling. Digital Signal Processing. vol. 22, no. 2, pp. 304-313 (2012). https://doi.org/10.1016/j.dsp.2010.11.002.

  23. D.E. Stewart and M. Anitescu. Optimal control of systems with discontinuous differential equations. Numerische Mathematik. vol. 114, no. 4, pp. 653-695 (2010). https://doi.org/10.1007/s00211-009-0262-2.

  24. D.E. Stewart. Energy balance for viscoelastic bodies in frictionless contact. Quarterly of Applied Mathematics. vol. 67, no. 4, pp. 735-743 (2009) https://doi.org/10.1090/S0033-569X-09-01161-8. Corrigendum: Quarterly of Applied Mathematics, vol. 69, no. 1, pp. 203-204. https://doi.org/10.1090/S0033-569X-2011-01229-8

  25. J. Ahn and D.E. Stewart. A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete & Continuous Dynam. Systems. vol. 12, no. 1, pp. 1-22 (2009). https://doi.org/10.3934/dcdsb.2009.12.1.

  26. D.E. Stewart. Uniqueness for solutions of differential complementarity problems. (16 pp.) Mathematical Programming. vol. 118, no. 2, Ser. A, pp. 327-345 (2009). https://doi.org/10.1007/s10107-007-0195-4.

  27. J. Ahn and D.E. Stewart. Dynamic frictionless contact in linear viscoelasticity. (22 pp.) IMA J. Numerical Analysis. vol. 29, no. 1, pp. 43-71 (2009). https://doi.org/10.1093/imanum/drm029.

  28. J.-S. Pang and D.E. Stewart. Solution dependence on initial conditions in differential variational inequalities. (33 pp.) Mathematical Programming. vol. 116, no. 1-2, Ser. B, pp. 429-460, 2009. https://doi.org/10.1007/s10107-007-0117-5.

  29. D.E. Stewart. Uniqueness for index-one differential variational inequalities. (8 pp.) Nonlinear Analysis: Hybrid Systems & Applications. vol. 2, no. 3, pp. 812-818 (2008). https://doi.org/10.1016/j.nahs.2006.10.015.

  30. J.-S. Pang and D.E. Stewart. Differential variational inequalities. Mathematical Programming (Ser. A). vol. 113, no. 2, pp. 345-424 (2008). https://doi.org/10.1007/s10107-006-0052-x.

  31. J. Ahn and D.E. Stewart. Euler-Bernoulli Beam with dynamic frictionless contact: penalty approximation and existence. (22 pp.) Numerical Functional Analysis and Optimization. vol. 28, no. 9, pp. 1003-1026 (2007). https://doi.org/10.1080/01630560701587759.

  32. D.E. Stewart and T. Wendt. Fractional index convolution complementarity problems. (12 pp.) Nonlinear Analysis: Hybrid Systems & Applications. vol. 1, no. 1, pp. 124-134, 2007. https://doi.org/10.1016/j.nahs.2006.08.001.

  33. C. Cartwright, S. Oliveira and D.E. Stewart. Parallel support set searches for meshfree methods. (12pp.) SIAM J. Scientific Computing. vol. 28, no. 4, pp. 1318-1334 (2006). https://doi.org/10.1137/S1064827502414321.

  34. D.E. Stewart. Differentiating complementarity problems and fractional index convolution complementarity problems. Houston Journal of Mathematics. vol. 33, no. 1, pp. 301-322, 2007.

  35. J. Ahn and D.E. Stewart. Existence of solutions for a class of impact problems without viscosity (21 pp.) SIAM J. Mathematical Analysis. vol. 38, no. 1, pp. 37-63, 2006. https://doi.org/10.1137/S0036141004444664.

  36. D.E. Stewart. Convolution complementarity problems with application to impact problems. (26pp.) IMA J. Appl. Mathematics. vol. 71, no. 1, pp. 92-119, 2006. https://doi.org/10.1093/imamat/hxh087.

  37. J. Ahn and D.E. Stewart. An Euler-Bernoulli beam with dynamic contact: Discretization, convergence and numerical results. (25pp.) SIAM J. Numer. Anal. vol. 43, no. 4, pp. 1455-1480, 2005. https://doi.org/10.1137/S0036142903432619.

  38. K.-H. Leem, S. Oliveira and D.E. Stewart. Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations. Numerical Linear Algebra and Applications, vol. 11 (issue 2-3), pp. 293-308, 2004. (MR 2005g:65059) https://doi.org/10.1002/nla.383

  39. S. Oliveira, T. Soma, D. E. Stewart. A subspace semidefinite programming for spectral graph partitioning. In Computational science--ICCS 2002, Part I (Amsterdam), pp. 1058-1067, Lecture Notes in Computer Science, 2329, Springer, 2002.

  40. S. Oliveira, T. Soma, D. E. Stewart. Semidefinite Programming for Graph Partitioning with Preferences in Data Distribution. In High Performance Computing for Computational Science -- Vecpar 2002, pp. 703-716. Selected papers from the VECPAR2002 conference, Springer, Lecture Notes in Computer Science, 2002. Edited by J.M.L.M. Palma, J. Dongarra, V. Hernandez, and A. Augusto Sousa.

  41. D.E. Stewart. Finite-dimensional contact mechanics. Phil. Trans. Royal Soc., Ser. A, vol. 359, pp. 2467-2482, 2001. (MR 2003a:70007) https://doi.org/10.1098/rsta.2001.0904

  42. D.E. Stewart. Reformulations of measure differential inclusions and their closed graph property. J. Differential Equations. vol. 175 (issue 1), pp. 108-129, 2001. (MR 2003c:34014) https://doi.org/10.1006/jdeq.2000.3968

  43. D.E. Stewart. Towards numerically estimating Hausdorff-Besicovitch dimensions. ANZIAM J., vol. 42, pp. 451-461, 2001. (MR 2001k:65196) https://doi.org/10.1017/S1446181100012207

  44. J. Ahn and D. E. Stewart. A simplified model of impact. Proceedings of the 3rd Contact Mechanics International Symposium, pp. 309-316. Edited by J.A.C. Martins and M.D.P. Monteiro-Marques. Kluwer Academic Press, 2001.

  45. C. Cartwright, S. Oliveira and D. E. Stewart. A parallel quadtree algorithm for efficient assembly of stiffness matrices in meshfree Galerkin methods. In Proceedings of Irregular 2001, a workshop of the 15th International Parallel and Distributed Processing Symposium, 2001 held in San Francisco, CA, April, 2001. Published by IEEE Computer Society, 2001 (CD-ROM).

  46. C. Cartwright, S. Oliveira and D. E. Stewart. A parallel quadtree algorithm for efficient assembly of stiffness matrices in meshfree Galerkin methods. In Proceedings of the Tenth SIAM Conference on Parallel Processing for Scientific Computing (CD-ROM), Juan Meza and Chuck Koelbel, editors, SIAM Publ., 2001.

  47. J.C. Trinkle and D.E. Stewart. An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. In Proceedings of the International Conference on Robotics and Automation (ICRA), 2000.

  48. X. Han, S. Oliveira and D.E. Stewart, Finding sets covering a point with applications to meshless Galerkin methods. SIAM J. Computing, vol. 30 (issue 4), pp. 1368-1383, 2000. (MR 2001j:68126) https://doi.org/ 10.1137/S0097539799359361

  49. D.E. Stewart. Formulating measure differential inclusions in infinite dimensions. Set-Valued Analysis, vol. 8 (issue 3), pp. 273-293, 2000. (MR 2002c:34101) https://doi.org/10.1023/A:1008789529348

  50. S. Oliveira and D.E. Stewart. Exponential splittings of products of matrices and accurately computing singular values of long products. Linear Algebra and its Applications, vol. 309 (issue 1-3), pp. 175-190, 2000. (MR 2001c:65053) https://doi.org/10.1016/S0024-3795(99)00273-6

  51. D.E. Stewart. Rigid-body dynamics with friction and impact. SIAM Review, vol. 42 (issue 1), pp. 3-39, 2000. (MR 2001c:70017) https://doi.org/10.1137/S0036144599360110

  52. J.-S. Pang D.E. Stewart. A unified approach to frictional contact problems. Internat. J. Engineering Science, vol. 37 (issue 13), pp. 1747-1768, 1999. (MR 2001c:74058) https://doi.org/10.1016/S0020-7225(98)00143-8

  53. M. Anitescu, F.A. Potra and D.E. Stewart. Time-stepping for three-dimensional rigid body dynamics. Comp. Methods Appl. Mech. Eng. vol. 177 (issue 3-4), pp. 183-197, 1999. (MR 2000f:70006) https://doi.org/ 10.1016/S0045-7825(98)00380-6

  54. D.E. Stewart. Convergence of a time-stepping scheme for rigid body dynamics and resolution of Painlevé's problems. Archive Rational Mechanics and Analysis, vol. 145 (issue 3), pp. 215-260, 1998. (MR 2000d:70010) https://doi.org/10.1007/s002050050129

  55. J.C. Trinkle and D.E. Stewart. Dynamics, friction, and complementarity problems. In Complementarity and Variational Problems: State of the Art, Proc. 1995 International Conference on Complementarity Problems, J.-S. Pang and M.C. Ferris, editors, pages 425-439. SIAM Publ., Philadelphia, 1997.

  56. D.E. Stewart Existence of solutions to rigid body dynamics and the paradoxes of Painlevé. Comptes Rendus de l'Academie des Sciences, Sér. I, vol. 325, pp. 689-693, 1997. (MR 98h:70006) https://doi.org/10.1016/S0764-4442(97)84784-2

  57. D.E. Stewart. A new algorithm for the SVD of a long product of matrices and the stability of products. Electron. Trans. Numer. Anal., vol. 5, pp. 29-47, 1997. (MR 98c:65063)

  58. D.E. Stewart. A graph theoretic model of symmetric Givens operations and its implications. Linear Alg. Appl., vol. 257, pp. 311-320, 1997. (MR 97m:65089) https://doi.org/10.1016/S0024-3795(96)00157-7

  59. M.S. Bebbington and D.E. Stewart. An iterative aggregation/disaggregation procedure for modelling the long-term behaviour of continuous-time evanescent random processes. J. Statistical Computation and Simulation, vol. 56, pp. 77-95, 1996.

  60. T.S. Leyk and D.E. Stewart. Estimates of error for Krylov approximation of matrix exponentials. J. Comp. Appl. Mathematics, vol. 72, pp. 359-369, 1996. (MR 95f:65007) https://doi.org/10.1016/0377-0427(96)00006-4

  61. D.E. Stewart and J.C. Trinkle. An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. International J. Numer. Methods Engineering, vol. 39, pp. 2673-2691, 1996. (MR 97d:70004) https://doi.org/10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I

  62. M. Sosonkina, L.T. Watson, and D.E. Stewart. Note on the end game in homotopy zero curve tracking. ACM Trans. Math. Software, vol. 22 (issue 3), pp. 281-287, 1996. (MR 97i:65095) https://doi.org/10.1145/232826.232843

  63. P.K. Pollett and D.E. Stewart. An efficient procedure for computing quasistationary distributions of Markov chains with sparse transition structure. Advances in Applied Probability, vol. 26 (issue 1), pp. 68-79, 1994. (MR 94i:60083)

  64. D.E. Stewart. A numerical method for friction problems with multiple contacts. J. Austral. Math. Soc., Ser. B, vol. 37 (issue 3), pp. 288-308, 1996. (MR 97b:34013) https://doi.org/10.1017/S0334270000010675.

  65. A.E. Dixon, C.A.J. Fletcher, D.E. Stewart, and M.R. Osborne. Calculation of gradients for aerodynamic design problems. In Computational Techniques and Applications: CTAC93, D.E. Stewart, D. Singelton and H. Gardner, editors, pages 193-201. World Scientific, Singapore, 1994.

  66. T.S. Leyk and D.E. Stewart. Solving linear parabolic equations by Krylov approximation techniques. In Computational Techniques and Applications: CTAC93, D.E. Stewart, D. Singelton and H. Gardner, editors, pages 329-337. World Scientific, Singapore, 1994.

  67. B.D. Davidson and D.E. Stewart. A numerical homotopy method and investigations of a spring-mass system. Mathematical Models and Methods in Applied Sciences, vol. 3 (issue 3), pp. 395-416, 1993. (MR 94k:34024) https://doi.org/10.1142/S0218202593000217

  68. D.E. Stewart. An index formula for degenerate LCP's. Linear Alg. Appl., vol. 191, pp. 41-52, 1993. (MR 94g:90147) https://doi.org/10.1016/0024-3795(93)90508-L

  69. D.E. Stewart. A numerical algorithm for optimal control problems with switching costs. J. Austral. Math. Soc. Ser. B, vol. 34, pp. 212-228, 1992. (MR 93h:49053) https://doi.org/10.1017/S0334270000008730

  70. D.E. Stewart. A note on high degree linear complementarity problems. Bull. Austral. Math. Soc., vol. 45, pp. 151-155, 1992. (MR 93a:90072) https://doi.org/10.1017/S0004972700037096

  71. D.E. Stewart. A problem decomposition technique with application to the optimal distribution of enzymes. SIAM J. Control Optim., vol. 30, pp. 390-407, 1992. (MR 92k:49078) https://doi.org/10.1137/0330024

  72. D.E. Stewart. A high accuracy method for solving ODEs with discontinuous right-hand side. Numer. Math., vol. 58, pp. 299-328, 1990. (MR 92c:65081) https://doi.org/10.1007/BF01385627

  73. A.S. Jones, D.E. Stewart, and H.B. Thompson. Eigenvalue estimates and existence for a generalized Graetz problem. J. Math. Anal. and Appl., vol. 141, pp. 152-163, 1989. (MR 90g:76086) https://doi.org/10.1016/0022-247X(89)90212-6

  74. K. Holmåker and D.E. Stewart. A class of optimization problems with noncompact constraints, general results and applications. SIAM J. Control Optim., vol. 25, pp. 1032-1052, 1987. (MR 88f:49004) https://doi.org/10.1137/0325057

Edited volumes & proceedings

  1. R.V.N. Melnik, S. Oliveira, and D.E. Stewart, editors. New Methods in Applied and Computational Mathematics, NEMACOM98. Proceedings of the NEMACOM98 workshop held at Hervey Bay, Queensland, Australia, 9th July, 1998. Australian National University, Canberra, 2000. CMA Proceedings #38. (ISBN 0731552024)

  2. D.E. Stewart, D. Singleton, and H. Gardner, editors. Computational Techniques and Applications, CTAC93, World Scientific, Singapore, 1994. Proceedings of the Computational Techniques and Applications Conference, 1993, held at the Australian National University, 5-9 July, 1993. (ISBN 9810214944)

Book chapters

  1. R.L. Dewar and D.E. Stewart. Nonlinear Dynamics: Physics and Numerics. Chapter 6 in Complex Systems, D.G. Green and T. Bossomaier, editors. Cambridge University Press, Cambridge. November 1999. pp. 165-249 out of 405 pp. (ISBN 0521462452) Details available via http://uk.cambridge.org/order/WebBook.asp?ISBN=0521462452

Unrefereed conference papers

  1. S. Oliveira, T. Soma, D. E. Stewart. Semidefinite programming for graph partitioning with preferences, In Proceedings of the 5th International Meeting on High Performance Computing for Computational Science (VECPAR2002), Part III, pp. 679-692, 2002.

  2. D.E. Stewart Simulation of rigid-body dynamics with impact and friction. In New Methods in Applied and Computational Mathematics: NEMACOM98, R.V.N. Melnik, S. Oliveira and D.E. Stewart, editors, pages 67-80. Australian National University, Centre for Mathematics and its Applications, Canberra, 2000. Proceedings of the CMA #38.

  3. D.E. Stewart Rigid body dynamics and measure differential inclusions. In Foundations of Computational Mathematics, F. Cucker and M. Shub, editors, pages 405-413. Springer-Verlag, Berlin, Heidelberg, New York, 1997. (Only selected papers published.)

  4. S. Oliveira, D.E. Stewart and W. Wu Multigrid Methods for solving variational inequalities by a penalty method. In Proceedings of Copper Mountain Conference on Iterative Methods, April 1996. NASA Publications, Langley.

  5. D.E. Stewart. Aspects of implementing a `C' matrix library. In M.S. Moonen, G.H. Golub, and B.L.R. De Moor, editors, Linear Algebra for Large Scale and Real-Time Applications, pages 423-424, 1993. NATO, Kluwer Academic, Dordrecht.

  6. D.E. Stewart and S.J. Wright. Monotone convergent methods for a variational inequality. In Proceedings of the Miniconference on Analysis and Applications, G.J. Martin and H.B. Thompson, editors, pages 195-208. Centre for Mathematics and its Applications, The Australian National University, Canberra. Proceedings #33. Conference held in Brisbane, Australia, 20-23 September, 1993.

Technical reports and other publications

  1. C.D. Maciel, J.C. Pereira and D.E. Stewart. Identifying healthy and pathologically affected voice signals [Lecture notes]. IEEE Signal Processing Magazine. vol. 27, no. 1, pp. 120-123 (2010). DOI: 10.1109/MSP.2009.934925.

  2. K.H. Leem, S. Oliveira, and D.E. Stewart. Some numerical results from meshless linear systems. Computational Mathematics Technical Report 01-140, Department of Mathematics, University of Iowa, September 2001.

  3. D.E. Stewart. Convergence of a time-stepping scheme for rigid body dynamics and resolution of Painlevé's problem: Summary. Computational Mathematics Technical Report 98-114, Department of Mathematics, University of Iowa, 1998.

  4. D.E. Stewart. On ``Bang-bang damping''. Australian Mathematical Society Gazette. 25(4):192-193, 1998.

  5. D.E. Stewart. Constrained Optimisation and Morse Theory. Computational Mathematics Technical Report 98-107, Department of Mathematics, University of Iowa, 1998.

  6. D.E. Stewart. Roots of measures and impulsive control. Computational Mathematics Technical Report 98-105, Department of Mathematics, University of Iowa, 1998.

  7. D.E. Stewart. Angles between wavelet spaces under an operator inner product. Technical Report ACTR-36-11-94, Programme in Advanced Computation, Centre for Mathematics and its Applications, School of Mathematical Sciences, Australian National University, 1994.

  8. D.E. Stewart. Product algorithms for eigensystems. Technical Report ACTR-31-03-94, Australian National University, Centre for Mathematics and its Applications, 1994.

  9. J.E.M. Munro, D.I. Clark, and D.E. Stewart. Notes on Mathematical Optimisation and Modelling. University of Canberra, Faculty of Information Sciences and Engineering publication ISE M67/94. April, 1994. (ISBN 0 8588 9429.7)

  10. D.E. Stewart. Hierarchical methods for approximate inertial manifolds. Technical Report ACTR-21-08-93, Programme in Advanced Computation, Centre for Mathematics and its Applications, School of Mathematical Sciences, Australian National University, 1993.

  11. D.E. Stewart. Multigrid methods for quasi-stationary distributions of continuous-time Markov chains. Technical Report ACTR-6-04-92, Programme in Advanced Computation, Centre for Mathematics and its Applications, School of Mathematical Sciences, Australian National University, 1992.

  12. D.E. Stewart. Working notes on domain optimisation for the Navier-Stokes equations. Technical Report ACTR-7-05-92, Programme in Advanced Computation, Centre for Mathematics and its Applications, School of Mathematical Sciences, Australian National University, 1992.

Note. Technical reports are available via http://wwwmaths.anu.edu.au/research.groups/advcomp/acreports or http://www.math.uiowa.edu/faculty/comp-math-reports.htm

David Stewart updated May 2020